CMPUT 366 (Winter 2022)

Intelligent Systems

Schedule

This schedule is subject to change as the semester progresses, but it will be kept up to date. Slides are linked from the lecture title. They will be made available on the day of the lecture.

wk Date Topic Readings & Milestones
1 Wed, Jan 5 Introduction: What is AI? (pre-recorded) P&M chapter 1
1 Fri, Jan 7 Introduction: Representational dimensions P&M chapter 1
2 Mon, Jan 10 Search: Graph search P&M §3.1–3.4
2 Wed, Jan 12 Search: Uninformed Search P&M §3.5
2 Fri, Jan 14 Search: Optimality & Simple Heuristic Search P&M §3.6
3 Mon, Jan 17 Search: Heuristic Search & A* P&M §3.7–3.8
3 Wed, Jan 19 Search: Branch & Bound P&M §3.7–3.8
Assignment 1 released
3 Fri, Jan 21 Search: Local search P&M §4.7
4 Mon, Jan 24 Uncertainty: Probability theory P&M §8.1\
4 Wed, Jan 26 Uncertainty: Conditional independence P&M §8.2
4 Fri, Jan 28 Uncertainty: Belief networks P&M §8.3
5 Mon, Jan 31 Uncertainty: Independence in belief networks P&M §8.4
5 Wed, Feb 2 Uncertainty: Inference in belief networks P&M §8.4
5 Fri, Feb 4 Causality: Causal inference Bar §3.4
Assignment 1 due
6 Mon, Feb 7 Supervised learning: Intro P&M §7.1–7.3
6 Wed, Feb 9 Supervised learning: Linear Models P&M §7.1–7.3
6 Fri, Feb 11 Supervised learning: Overfitting P&M §7.4
Assignment 2 released
7 Mon, Feb 14 Supervised learning: Exact Bayesian models P&M §10.4
7 Wed, Feb 16 Supervised learning: Monte Carlo estimation P&M s.8.6
7 Fri, Feb 18 Deep learning: Calculus refresher GBC §4.1, 4.3
  Mon, Feb 21 Winter Reading Break, NO CLASS  
  Wed, Feb 23 Winter Reading Break, NO CLASS  
  Fri, Feb 25 Winter Reading Break, NO CLASS  
8 Mon, Feb 28 Deep learning: Neural networks GBC §6.0–6.4.1
Assignment 2 due
8 Wed, Mar 2 Deep learning: Training Neural Networks GBC §6.5
8 Fri, Mar 4 Deep learning: Convolutional neural networks GBC §9.0–9.4
9 Mon, Mar 7 Deep learning: Recurrent neural networks GBC §10.0–10.2, 10.4, 10.10
Assignment 3 released
9 Wed, Mar 9 Midterm review  
9 Fri, Mar 11 Midterm exam  
10 Mon, Mar 14 Reinforcement learning: Markov decision processes S&B §3.0–3.4
10 Wed, Mar 16 Reinforcement learning: Policies and value functions S&B §3.5
10 Fri, Mar 18 Reinforcement learning: Optimality and Dynamic Programming S&B §3.6, §4.0–4.2
11 Mon, Mar 21 Reinforcement learning: Policy Iteration & Monte Carlo Prediction S&B §4.3–4.4, §5.0–5.2
11 Wed, Mar 23 Reinforcement learning: Monte Carlo Control S&B §5.3–5.5, §5.7
11 Fri, Mar 25 Reinforcement learning: Temporal difference learning S&B §6.0–6.5
Assignment 3 due
12 Mon, Mar 28 Reinforcement learning: Function approximation S&B §9.0–9.5.4
Assignment 4 released
12 Wed, Mar 30 Reinforcement learning: Policy gradient S&B §13.0–13.3
12 Fri, Apr 1 Multiagent systems:
Game theory for single interactions
S&LB §3.0–3.3.2
13 Mon, Apr 4 Multiagent systems:
Game theory for sequential interactions
S&LB §5.0–5.2.2
13 Wed, Apr 6 Multiagent systems:
Zero-sum games
S&LB §3.4.1
13 Fri, Apr 8 Final exam review  
  Wed, Apr 13 Final exam eClass
  Fri, Apr 15 Assignment 4 due