
Branch & Bound

CMPUT 366: Intelligent Systems

P&M §3.7-3.8

or, How I Learned to Stop Worrying and Love Depth First Search

Logistics

• Assignment #1 will be released today

• Available on eClass

• Due: Friday February 4, 2022

Recap: Heuristics
Definition:
A heuristic function is a function that returns a non-negative estimate
of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if is always less than or equal to the
cost of the cheapest path from to a goal node.

• i.e., is a lower bound on for any goal node

h(n)

h(n)
n

h(n) cost(⟨n, …, g⟩) g

Recap: A* Search
• A* search uses both path cost information and heuristic information to

select paths from the frontier

• Let

• estimates the total cost to the nearest goal node starting from

• A* removes paths from the frontier with smallest

• When is admissible,
 is a solution, and

 is a prefix of :

•

f(p) = cost(p) + h(p)

f(p) p

f(p)

h
p* = ⟨s, …, n, …, g⟩
p = ⟨s, …, n⟩ p*

f(p) ≤ cost(p*)

start actual

cost(p)
n estimated goal

h(n)

f(p)

Recap: A* Search Algorithm
Input: a graph; a set of start nodes; a function

while is not empty:
 select -minimizing path from frontier
 remove from
 if :
 return
 for each neighbour of :
 add to frontier
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

i.e.,  
for all other paths

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier

Recap: A* Theorem
Theorem:
If there is a solution, A* using heuristic function always returns an optimal solution (in
finite time), if

1. The branching factor is finite,

2. All arc costs are greater than some , and

3. is an admissible heuristic.

Proof:

1. The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

h

ϵ > 0

h

Lecture Outline

1. Recap & Logistics

2. Cycle Pruning

3. Branch & Bound

4. Exploiting Search Direction

Cycle Pruning

• Even on finite graphs, depth-first search may not be
complete, because it can get trapped in a cycle.

• A search algorithm can prune any path that ends in a node
already on the path without missing an optimal solution
(Why?)

Questions:

1. Is depth-first search on
with cycle pruning
complete for finite
graphs?

2. What is the time
complexity for cycle
checking in depth-first
search?

3. What is the time
complexity for cycle
checking in breadth-first
search?

Cycle Pruning
Depth First Search

Input: a graph; a set of start nodes; a function

while is not empty:
 select the newest path from
 remove from
 if for all :
 if :
 return
 for each neighbour of :
 add to
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

nk ≠ nj 0 ≤ j < k
goal(nk)

⟨n0, …, nk⟩
n nk

⟨n0, …, nk, n⟩ frontier

Heuristic Depth First Search
Depth First Breadth First Iterative

Deepening
Space

complexity O(mb) O(bm) O(mb)

Complete? Finite graphs
only Complete Complete

Heuristic
Depth First A* Branch &

Bound

Space
complexity O(mb) O(bm) O(mb)

Heuristic
Usage Limited Optimal

Optimal
(if bound low

enough)

Optimal? No Yes
Yes

(if bound high
enough)

Branch & Bound
• The function provides a path-specific lower bound on

solution cost starting from

• Idea: Maintain a global upper bound on solution cost also
• Then prune any path whose lower bound exceeds the upper

bound

• Question: Where does the upper bound come from?
• Cheapest solution found so far
• Before solutions found, specified on entry
• Can increase the global upper bound iteratively

(as in iterative deepening search)

f(p)
p

Branch & Bound Algorithm
Input: a graph; a set of start nodes; a function; heuristic ;

while is not empty:
 select the newest path from
 remove from
 if
 if :

 else:
 for each neighbour of :
 add to
end while 
return

goal h(n) bound0

frontier := {⟨s⟩ ∣ s is a start node}
bound := bound0
best := Ø

frontier
⟨n0, …, nk⟩ frontier

⟨n0, …, nk⟩ frontier
f(⟨n0, …, nk⟩) ≤ bound :

goal(nk)
bound := cost(⟨n0, …, nk⟩)
best := ⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

best

Question: Why not here?f

Branch & Bound Analysis
• If is set to just above the optimal cost, branch & bound will explore no more

paths than A* (Why?)

• With iterative increasing of , will re-explore some lower-cost paths, but still
similar time-complexity to A*

Question: How much should the bound get increased by?

• Iteratively increase bound to the lowest- -value node that was pruned

• Worse than A* by no more than a linear factor of ,
by the same argument as for iterative deepening search

• Choosing next -limit is an active area of research

bound0

bound0

f

m

f

Exploiting Search Direction
• When we care about finding the path to a known goal

node, we can search forward, but we can often search
backward

• Given a search graph , known goal node ,
and set of start nodes , can construct a reverse search
problem :

1. Designate as the start node

2.

3. if
(i.e., if is a start node of the original problem)

G = (N, A) g
S

G = (N, Ar)

g

Ar = {⟨n2, n1⟩ ∣ ⟨n1, n2⟩ ∈ A}

goalr(n) = 1 n ∈ S
n

Questions:

1. When is this useful?

2. When is this infeasible?

Reverse Search
Definitions:

1. Forward branch factor: Maximum number of outgoing neighbours
Notation:

• Time complexity of forward search:

2. Reverse branch factor: Maximum number of incoming neighbours
Notation:

• Time complexity of reverse search:

When the reverse branch factor is smaller than the forward branch factor,
reverse search is more time-efficient.

b

r

O(bm)

O(rm)

Bidirectional Search
• Idea: Search backward from from goal and forward from

start simultaneously

• Time complexity is exponential in path length, so
exploring half the path length is an exponential
improvement

• Even though must explore half the path length twice

• Main problems:

• Guaranteeing that the frontiers meet

• Checking that the frontiers have met

Questions:

What bidirectional
combinations of search
algorithm make sense?

• Breadth first +
Breadth first?

• Depth first +
Depth first?

• Breadth first +
Depth first?

Summary
• A* considers both path cost and heuristic cost when selecting paths:

• Admissible heuristics guarantee that A* will be optimal

• Admissible heuristics can be built from relaxations of the original
problem

• The more accurate the heuristic is, the fewer the paths A* will explore

• Branch & bound combines the optimality guarantee and heuristic
efficiency of A* with the space efficiency of depth-first search

• Tweaking the direction of search can yield efficiency gains

f(p) = cost(p) + h(p)

