Branch & Bound

or, How | Learned to Stop Worrying and Love Depth First Search

CMPUT 366: Intelligent Systems

| ogistics

 Assignment #1 will be released today

e Available on eClass

* Due: Friday February 4, 2022

Recap: Heuristics

Definition:

A heuristic function is a function A(n) that returns a non-negative estimate
of the cost of the cheapest path from n to a goal node.

* e.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if 4(n) is always less than or equal to the
cost of the cheapest path from n to a goal node.

» i.e., h(n)is alower bound on cost({n, ..., g)) for any goal node g

Recap: A* Search

A* search uses both path cost information and heuristic information to
select paths from the frontier

Let f(p) = cost(p) + h(p)
» f(p) estimates the total cost to the nearest goal node starting from p
A* removes paths from the frontier with smallest f(p)

When £ is admissible,

p*={(s,...,n,...,g) is asolution, and start 8Ctual - estimated g

> N

p ={(s,...,n)is a prefix of p*:

N

oal

cost(p) h(n)

» f(p) < cost(p*) ‘ -

Recap: A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier :== {(s) | sis a start node} e, f((ng, ... m)) < f(p)
_ L for all other paths p € frontier
while frontier is not eM
select f-minimizing path (n,, ..., n;) from frontier
remove (1, ..., n;) from frontier
if goal(ny):
return (n, ..., n;)

for each neighbour n of n;:

add (ny, ..., n,, n) to frontier
end while

Recap: A* Theorem

Theorem:

If there is a solution, A* using heuristic function A always returns an optimal solution (in
finite time), if

1. The branching factor is finite,

2. All arc costs are greater than some € > (), and

3. his an admissible heuristic.
Proof:
1. The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

| ecture Outline

1. Recap & Logistics

2. Cycle Pruning

3. Branch & Bound

4. Exploiting Search Direction

Cycle Pruning

uestions:

1. |Is depth-first search on
with cycle pruning
complete for finite

* Even on finite graphs, depth-first search may not be graphs’?
complete, because it can get trapped In a cycle.

2. What Is the time

* A search algorithm can prune any path that ends in a node complexity for cycle
already on the path without missing an optimal solution checking in depth-first
(Why?) search”

3. What is the time
complexity for cycle
checking in breadth-first
search”

Cycle Pruning
Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := {(s) | s is a start node}
while frontier is not empty:

select the newest path (n, ..., n,) from frontier
remove (7, ..., 1) from frontier
if . # n;foral 0 < j < k:
if goal(n,):
return (n, ..., 1)

for each neighbour n of n;:

add (n,, ..., ny, n) to frontier
end while

Heuristic Depth First Search

Heuristic Branch &
Depth First Bound
Space O(mb) O(bm) O(mb)
complexity
Optimal
HS“”S“C Limited Optimal (if bound low
Sage enough)
Yes
Optimal? No Yes (if bound high

enough)

Branch & Bound

» The f(p) function provides a path-specific lower bound on
solution cost starting from p
* ldea: Maintain a global upper bound on solution cost also

 [hen prune any path whose lower bound exceeds the upper
bound

e Question: \Where does the upper bound come from??

 Cheapest solution found so far

» Before solutions found, specified on entry

* (Can increase the global upper bound iteratively
(@s In iterative deepening search)

Branch & Bsound Algorithm

Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound,

frontier .= {(s) | s is a start node}
bound := bound,

best .= @
while frontier is not empty:
select the newest path (n, ..., n,) from frontier
remove (1, ..., 1) from frontier
if f((ng, -..,n)) < bound :
if goal(n,):
bound := COSI((I”IO, S50 nk>) Question: \Why not f here?
best := (ngy, ..., ;)
else:

for each neighbour n of n;:
add (n,, ..., n,, n) to frontier
end while
return best

Branch & Bound Analysis

» If bound, is set to just above the optimal cost, branch & bound will explore no more
paths than A* (Why?)

» With iterative increasing of bound,y, will re-explore some lower-cost paths, but stil
similar time-complexity to A*
Question: How much should the bound get increased by?
e lteratively increase bound to the lowest-f-value node that was pruned

 Worse than A* by no more than a linear factor of m,
by the same argument as for iterative deepening search

 Choosing next f-limit is an active area of research

Exploiting Search Direction

* \When we care about finding the path to a known goal
node, we can search forward, but we can often search

backward

» Given a search graph G = (N, A), known goal node g,
and set of start nodes Y, can construct a reverse search

problem G = (V,A"):

1. Designate g as the start node Questions:

2. A" = {(ny,my) | (ny,my) € A}
1. When is this useful?
3. goal'(n)=1ifnes

(.e., If nis a start node of the original problem) o \When is this infeasible?

Reverse Search

Definitions:

1. Forward branch factor: Maximum number of outgoing neighbours
Notation: b

» Time complexity of forward search: O(b™)

2. Reverse branch factor: Maximum number of incoming neighbours
Notation: r

« Time complexity of reverse search: O(r™) f

When the reverse branch factor is smaller than the forward branch factor,
reverse search Is more time-efficient.

Bidirectional Search

* ldea: Search backward from from goal and forward from
start simultaneously

* [Ime complexity iIs exponential in path length, so
exploring half the path length is an exponential
improvement

* Even though must explore half the path length twice
 Main problems:
* Guaranteeing that the frontiers meet

* Checking that the frontiers have met

Questions:

What bidirectional
combinations of search
algorithm make sense?

e Breadth first +
Breadth first?

e Depth first +
Depth first”

e Breadth first +
Depth first”

Summary

A* considers both path cost and heuristic cost when selecting paths:

Admiss

Admissi

problenr

Jf(p) = cost(p) + h(p)

Ible heuristics guarantee that A* will be optimal

ole heuristics can be built from relaxations of the original

The more accurate the heuristic Is, the fewer the paths A™ will explore

Branch

& bound combines the optimality guarantee and heuristic

efficiency of A* with the space efficiency of depth-first search

Tweakin

g the direction of search can yield efficiency gains

