Independence in Belief Networks

CMPUT 366: Intelligent Systems

P&M §8.4

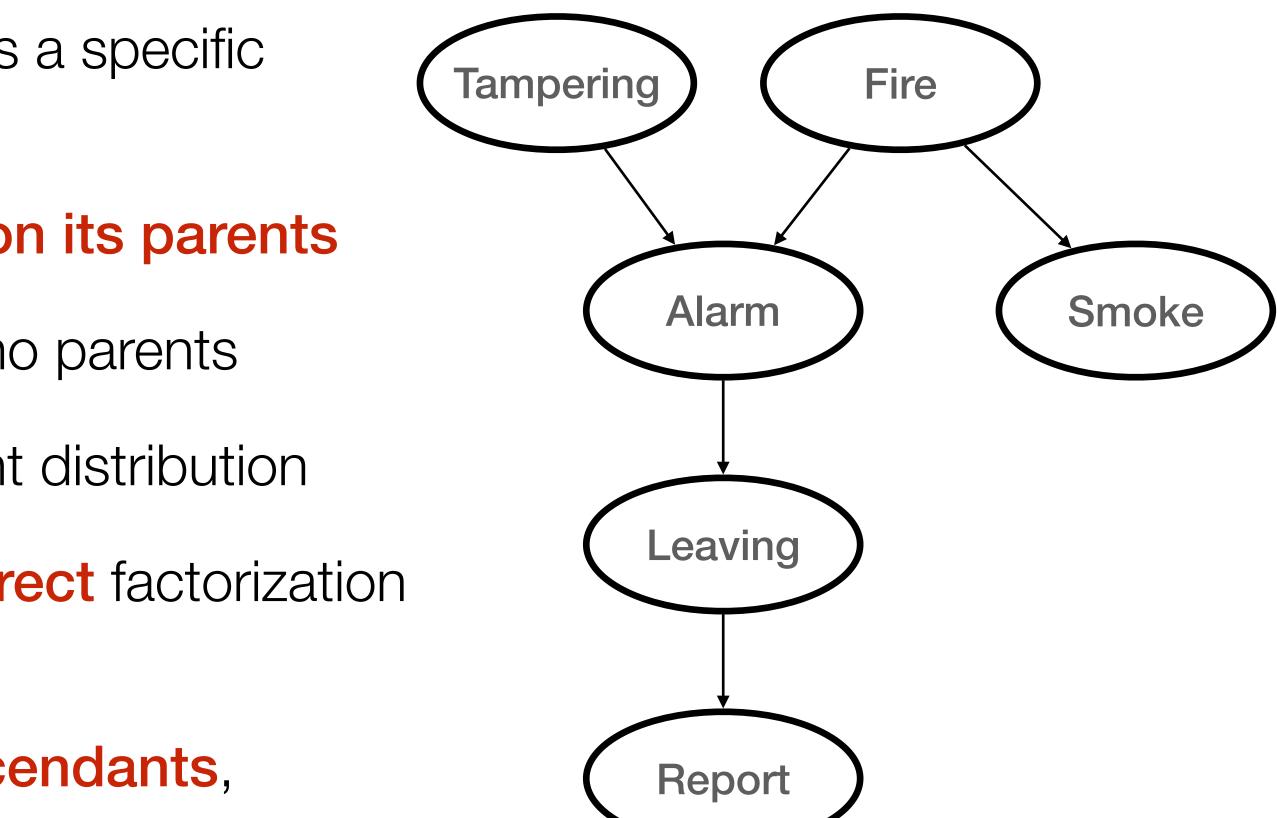
Lecture Outline

- Recap 1.
- 2. Belief Networks as Factorings
- 3. Independence in Belief Networks

Recap: Belief Network Semantics

- Definition: Graph representation represents a specific factorization of the full joint distribution
 - Distribution on each node conditional on its parents
 - Marginal distributions on nodes with no parents
 - **Product** of these distributions is the joint distribution
 - Not every possible factorization is a correct factorization
- Semantics Theorem:

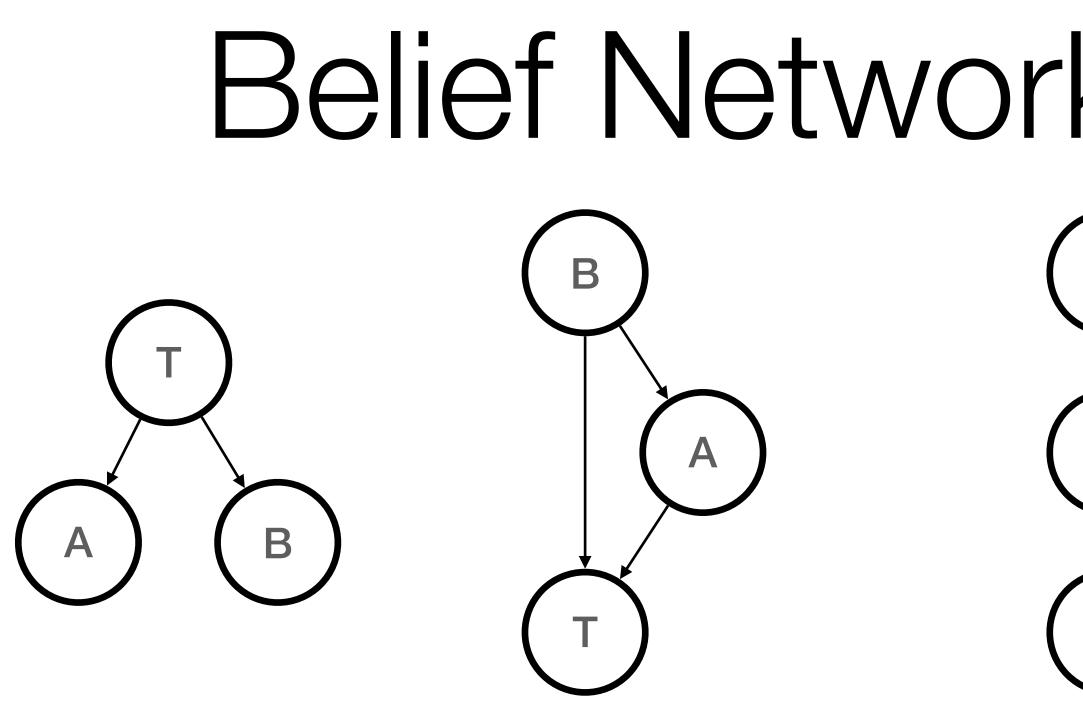
Every node is **independent** of its **non-descendants**, **conditional only** on its **parents**



Recap: Mechanically Constructing Belief Networks

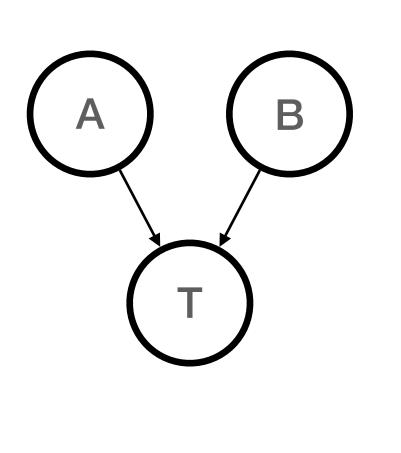
Given a **joint distribution** we can mechanically construct a **correct** encoding:

- 1. Order the variables X_1, X_2, \ldots, X_n and associate each one with a **node**
- 2. For each variable X_i :
 - Choose a minimal set of variables $parents(X_i)$ from (i) $X_1, ..., X_{i-1}$ such that $P(X_i \mid parents(X_i)) = P(X_i \mid X_1, ..., X_{i-1})$
 - i.e., conditional on $parents(X_i)$, X_i is independent of all the other variables that are earlier in (ii)the ordering
 - (iii) Add an **arc** from each variable in $parents(X_i)$ to X_i
 - (iv) Label the node for X_i with the **conditional probability table** $P(X_i \mid parents(X_i))$



- A joint distribution can be factored in **multiple** different ways
 - Every variable ordering induces at least one correct factoring (Why?)
- A belief network represents a **single** factoring \bullet
- Some factorings are correct, some are incorrect

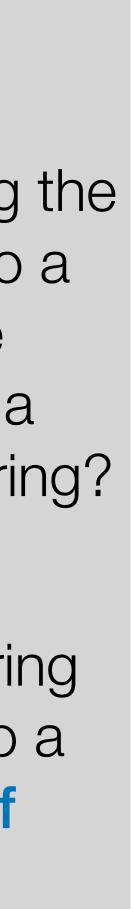
Belief Networks as Factorings



B

Questions:

- Does applying the Chain Rule to a given variable ordering give a unique factoring?
- Does a given 2. variable ordering correspond to a **unique Belief Network**?



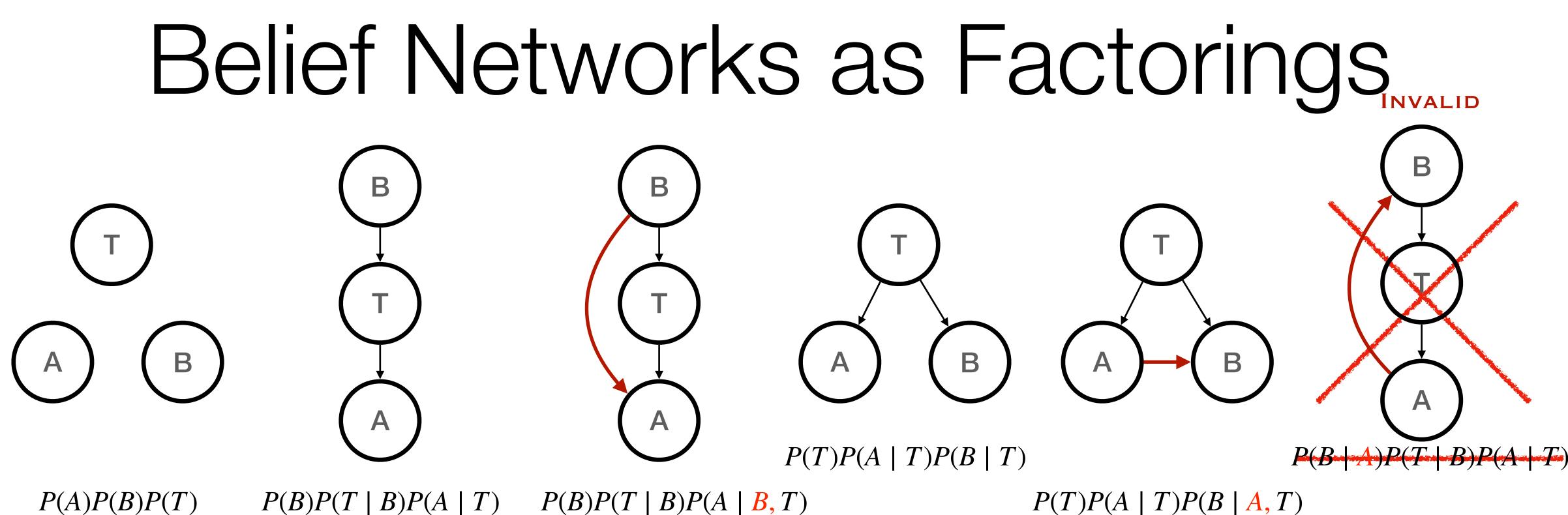
Correct and Incorrect Factorings in the Clock Scenario

Which of the following are **correct** factorings of the joint distribution P(A, B, T) in the Clock Scenario?

- 1. P(A)P(B)P(T)
- 2. $P(A)P(B \mid A)P(T \mid A, B)$

Which of the above are a **good** factoring for the Clock Scenario? Why?

Chain rule(A,B,T): $P(A)P(B \mid A)P(T \mid A,B)$ 3. P(T | P(B | T)P(A | T) Chain rule(T,B,A): P(T)P(B | T,A)P(A | T)

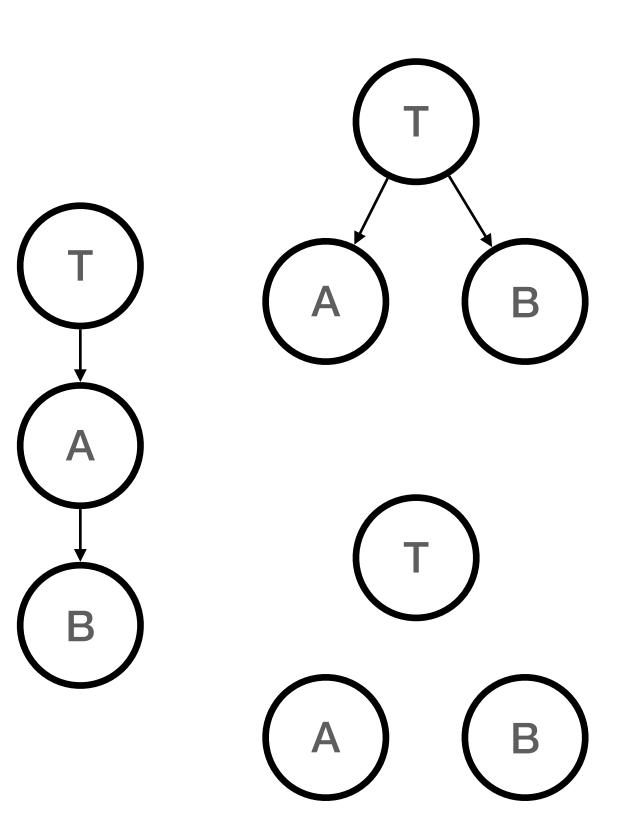


Question: What **factoring** is represented by each network?

Conditional independence guarantees are represented in belief networks by the absence of edges.

Variations on the Clock Scenario

- A valid belief is only "correct" or "incorrect" with respect to a given joint distribution
- A single network may be correct in one scenario and incorrect in another
- **Telephone Clock Scenario:** Alice looks at the clock, then tells Bob the time over a noisy phone connection
- **Desert Islands Clock Scenario:** Alice is on Island A. \bullet Bob is on Island B. The clock is on Island C. Alice and Bob cannot see or hear each other, or the clock.



Independence in a Joint Distribution

Question: How can we answer questions about independence using the **joint** distribution?

Examples using P(A, B, T):

- 1. Is A independent of B?
- $P(A = a \mid B = b) = P(A = a)$ for all $a \in dom(A), b \in dom(B)$?
- 2. Is T independent of A?
- $P(T = t \mid A = a) = P(T = t)$ for all $a \in dom(A), t \in dom(T)$?
- 3. Is A independent of B given T?
- P(A = a | B = b, T = t) = P(A = a | T = t)for all $a \in dom(A), b \in dom(B), t \in dom(T)$?

$$P(A, B) = \sum_{t \in T} P(A, B, T)$$

$$P(A, T) = \sum_{b \in B} P(A, B) = A$$

$$P(B, T) = \sum_{a \in A} P(A) = a, B$$

$$P(A) = \sum_{b \in B} P(A, B) = A$$

$$P(B) = \sum_{a \in A} P(A) = a, B$$

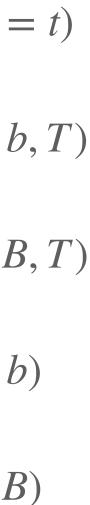
$$P(T) = \sum_{a \in A} P(A) = a, B$$

$$P(T) = \frac{P(A, B, T)}{P(B, T)}$$

$$P(A \mid B) = \frac{P(A, B)}{P(B)}$$

$$P(A \mid T) = \frac{P(A, T)}{P(T)}$$

$$P(T \mid A) = \frac{P(A, T)}{P(A)}$$



Belief Network Semantics

Definition: A belief network represents a joint distribution that can be factored as $P(X_1, \dots, X_n) = \prod^n P(X_i \mid parents(X_i))$ i=1

Theorem: (Belief Network Guarantee) Every node is **independent** of its **non-descendants**, **conditional only** on its **parents**

Proof:

1. X_i is a descendant of $X_i \implies i < j$

2. For all i > j, $P(X_i \mid parents(X_i), X_j) = P(X_i \mid parents(X_i))$

3. For all i < j, if j is not a descendant of i, then $P(X_i \mid parents(X_i), X_i) = P(X_i \mid parents(X_i))$

Belief Networ Proc

 $P(X_1, ..., X_i) = P(X_i \mid parents(X_i))P(X_1, ..., X_{i-1}) =$

 $P(X_i, X_j, parents(X_i)) = \sum_{Z} P(X_1, \dots, X_i) = \sum_{Z} P(X_i)$ $P(X_i \mid parents(X_i), X_j) = \frac{P(X_i, parents(X_i), X_j)}{P(parents(X_i), X_j)}$ $= \frac{\sum_{Z} P(X_i \mid parents(X_i)) \prod_{k=1}^{i-1} P(X_k \mid parents(X_k))}{\sum_{Z} \prod_{k=1}^{i-1} P(X_k \mid parents(X_k))}$ $= P(X_i \mid parents(X_i)) \frac{\sum_{i=1}^{l} \sum_{k=1}^{l} \prod_{k=1}^{l}}{\sum_{i=1}^{l} \sum_{k=1}^{l} \prod_{k=1}^{l}}$

$$F(X_{i} | parents(X_{i})) \prod_{k=1}^{i-1} P(X_{k} | parents(X_{k})) \text{ marginal}$$

$$F(X_{i} | parents(X_{i})) \prod_{k=1}^{i-1} P(X_{k} | parents(X_{k})) \text{ marginal}$$

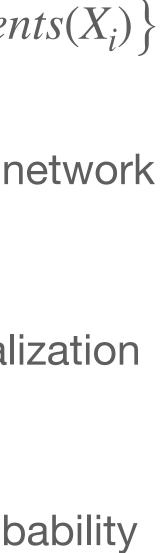
def. conditional probability

$$\sum_{k=1}^{i-1} P(X_k \mid parents(X_k))$$

$$\sum_{k=1}^{i-1} P(X_k \mid parents(X_k))$$

$$\sum_{k=1}^{i-1} P(X_k \mid parents(X_k))$$

 $= P(X_i \mid parents(X_i))$



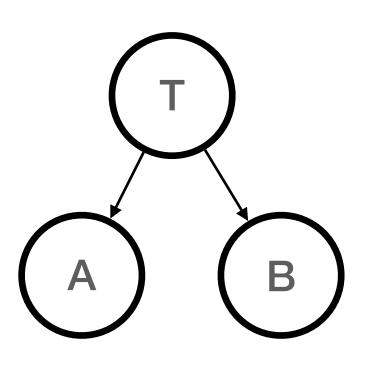
Independence in a Belief Network

Belief Network Semantics:

Every node is independent of its non-descendants, conditional only on its parents

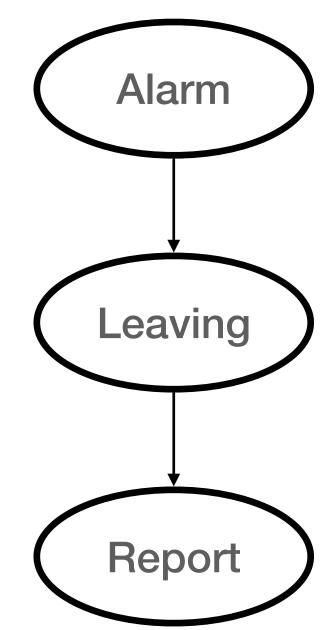
- lacksquareanswer questions about independence
- Examples using the belief network at right: •
 - Is **T** independent of **A**?
 - 2. Is A independent of B given T?
 - 3. Is A independent of B?

We can use the semantics of a correct belief network to



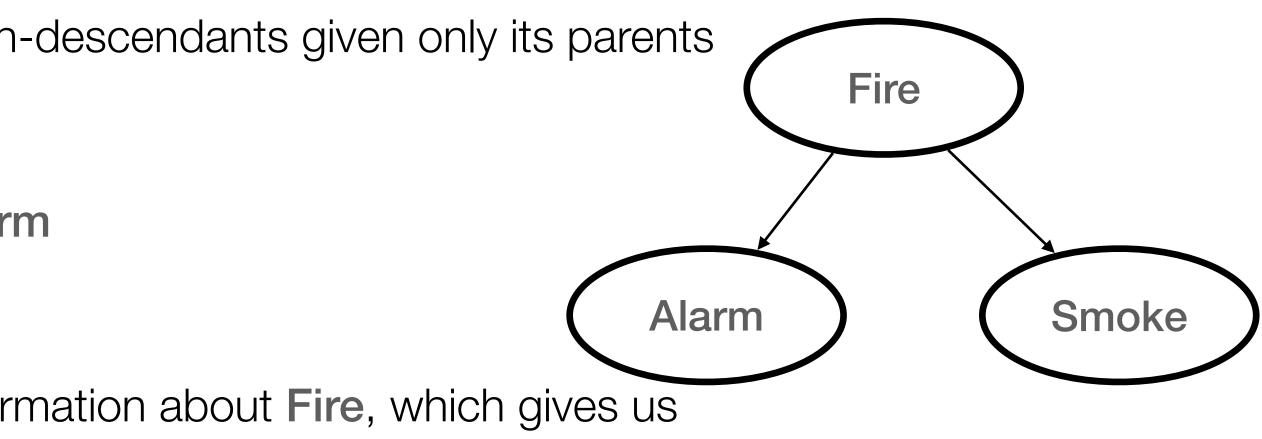
Chain

- **Question:** Is **Report** independent of **Alarm** given **Leaving**? lacksquare
 - Intuitively: The only way learning **Report** tells us about **Alarm** is because it \bullet tells us about Leaving; but Leaving has already been observed
 - *Formally:* **Report** is independent of its non-descendants given only its parents lacksquare
 - Leaving is Report's parent
 - Alarm is a non-descendant of **Report**
- **Question:** Is **Report** independent of **Alarm**?
 - Intuitively: Learning **Report** gives us information about **Leaving**, which gives \bullet us information about Alarm
 - Formally: Report is independent of Alarm given Report's parents; but the question is about **marginal** independence



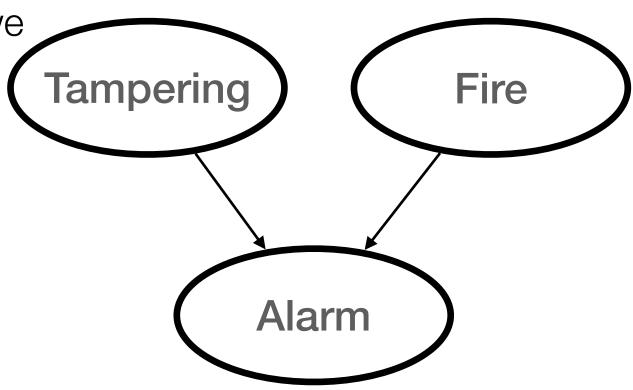
Common Ancestor

- **Question:** Is **Alarm** independent of **Smoke** given **Fire**?
 - Intuitively: The only way learning **Smoke** tells us about **Alarm** is because it \bullet tells us about Fire; but Fire has already been observed
 - Formally: Alarm is independent of its non-descendants given only its parents \bullet
 - Fire is Alarm's parent
 - Smoke is a non-descendant of Alarm
- **Question:** Is **Alarm** independent of **Smoke**? \bullet
 - Intuitively: Learning Smoke gives us information about Fire, which gives us ulletinformation about **Alarm**
 - Formally: Alarm is independent of Smoke given only Alarm's parents; but the question is about **marginal independence**



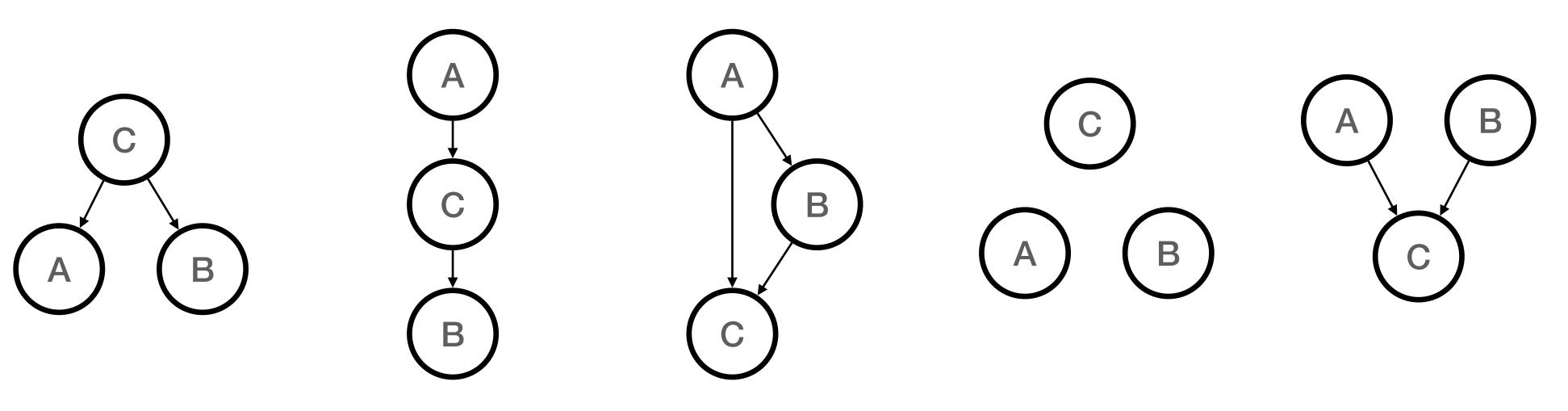
- **Question:** Is **Tampering** independent of **Fire** given **Alarm**?
 - Intuitively: If we know Alarm is ringing, then both Tampering and Fire are more likely. If we then learn that **Fire** is false, that makes it more likely that the **Alarm** is ringing because of Tampering.
 - Formally: Tampering is independent of Fire given only Tampering's parents; but we are conditioning on one of Tampering's **descendants**
 - Conditioning on a **common descendant** can make independent variables dependent through this **explaining away** effect
- **Question:** Is **Tampering** (marginally) independent of **Fire**?
 - Intuitively: Learning Tampering doesn't tell us anything about whether a Fire is happening
 - Formally: Tampering is independent of Fire given Tampering's parents
 - **Tampering** has no parents, so we are always conditioning on them
 - Fire is a non-descendant of Tampering

Common Descendant



Correctness of a Belief Network

A belief network is a **correct** representation of a joint distribution when the belief network answers "yes" to an independence question only if the joint distribution answers "yes" to the same question.



Questions:

- 2.

Is A independent of B in the above belief networks?

Is A independent of B given C in the above belief networks?

Summary

- A belief network represents a specific factoring of a joint distribution
 - More than one belief network can correctly represent a joint distribution
 - A given belief network may be correct for one underlying joint distribution and incorrect for another
- A **good** belief network is one that encodes as many **true** conditional independence relationships as possible
- It is possible to read the conditional independence guarantees made by a belief network directly from its graph structure