Convolutional Neural Networks

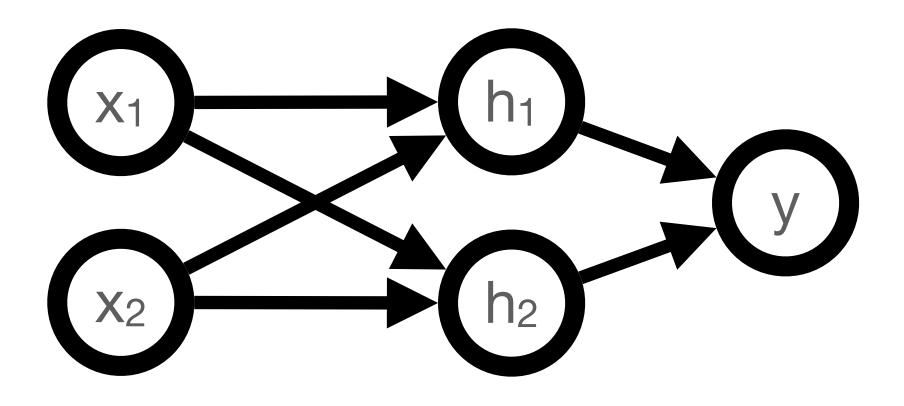
CMPUT 366: Intelligent Systems

GBC §9.0-9.4

Logistics

- Midterm is next Friday, March 11
 - Exam delivered via eclass
 - 24 hour window to take the exam
 - 1 hour from start
- There will be a review class next Wednesday
 - More details about format, likely questions, etc. •

Recap: Feedforward Neural Network



- A neural network is many units composed together
- Feedforward neural network: Units arranged into layers
 - Each layer takes outputs of previous layer as its inputs

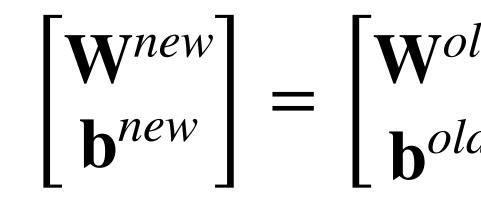
$$h_1(\mathbf{x}; \mathbf{w}^{(1)}, b^{(1)}) = g\left(b^{(1)} + \sum_{i=1}^n w_i^{(1)} x_i\right)$$

$$y(\mathbf{x}; \mathbf{w}, \mathbf{b}) = g\left(b^{(y)} + \sum_{i=1}^{n} w_i^{(y)} h_i(\mathbf{x}_i; \mathbf{w}^{(i)}, b^{(i)})\right)$$
$$= g\left(b^{(y)} + \sum_{i=1}^{n} w_i^{(y)} g\left(b^{(i)} + \sum_{j=1}^{n} w_j^{(i)} x_j\right)\right)$$

Recap: Training Neural Networks

- Specify a loss L and a set of training examples:
- Training by gradient descent: \bullet

 - Compute gradient of loss: 2.
 - 3. Update parameters to make loss smaller:



 $E = (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})$ _oss function (e.g., squared error) 1. Compute loss on training data: $L(\mathbf{W}, \mathbf{b}) = \sum \ell(f(\mathbf{x}^{(i)}; \mathbf{W}, \mathbf{b}), y^{(i)})$ Prediction Target

$\nabla L(\mathbf{W}, \mathbf{b})$

$$\begin{bmatrix} ld \\ d \end{bmatrix} - \eta \nabla L(\mathbf{W}^{old}, \mathbf{b}^{old})$$

Recap: Automatic Differentiation

- Forward mode sweeps through the gr
 - The numerator varies, and the denominator is fixed
 - At the end, we have computed S'_n
- **Backward mode** does the opposite: \bullet
 - For each s_i , computes the local gr
 - The numerator is fixed, and the denominator varies
 - At the end, we have computed $\overline{x_i}$ =
- Key point: The intermediate results are computed numerically at each step \bullet

raph, computing
$$s'_i = \frac{\partial s_i}{\partial s_1}$$
 for each s_i

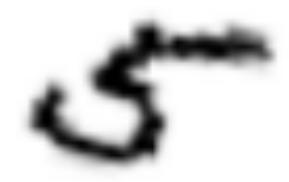
$$= \frac{\partial s_n}{\partial x_i}$$
 for a **single** input x_i

radient
$$\overline{s_i} = \frac{\partial s_n}{\partial s_i}$$

$$= \frac{\partial s_n}{\partial x_i}$$
 for each input x_i

Lecture Outline

- 1. Recap & Logistics
- 2. Neural Networks for Image Recognition
- 3. Convolutional Neural Networks



Problem: Recognize the handwritten digit from an image

- What are the **inputs**?
- What are the **outputs**? •
- What is the **loss**? lacksquare

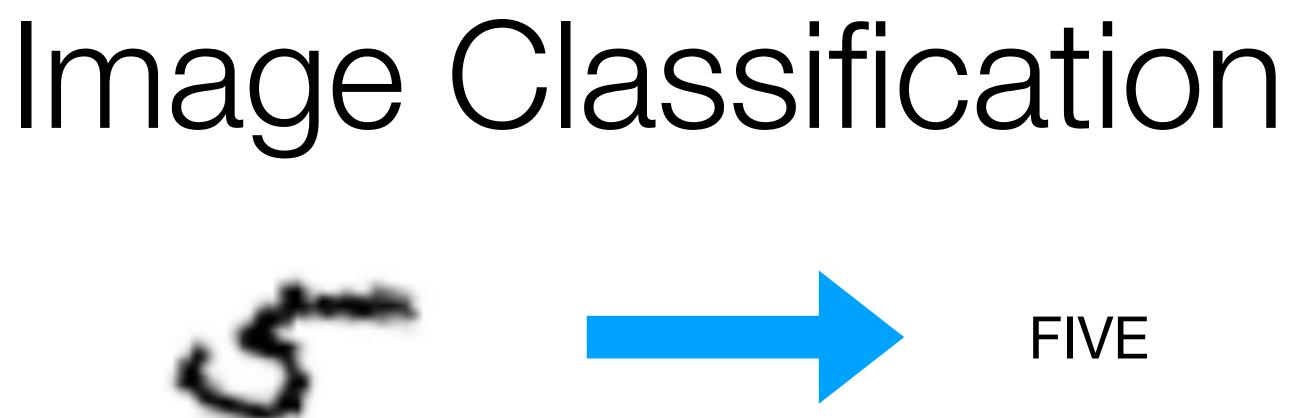


Image Classification with Neural Networks

How can we use a **neural network** to solve this problem?

- How to represent the inputs?
- How to represent the **outputs**?
- What are the **parameters**?
- What is the loss?

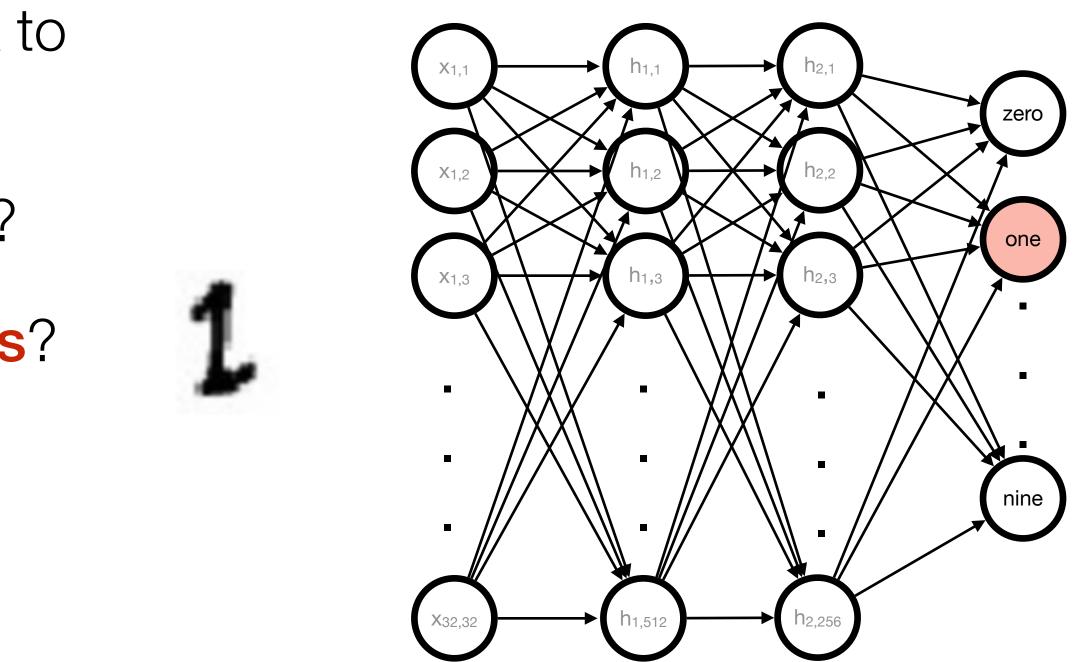


Image Recognition Issues

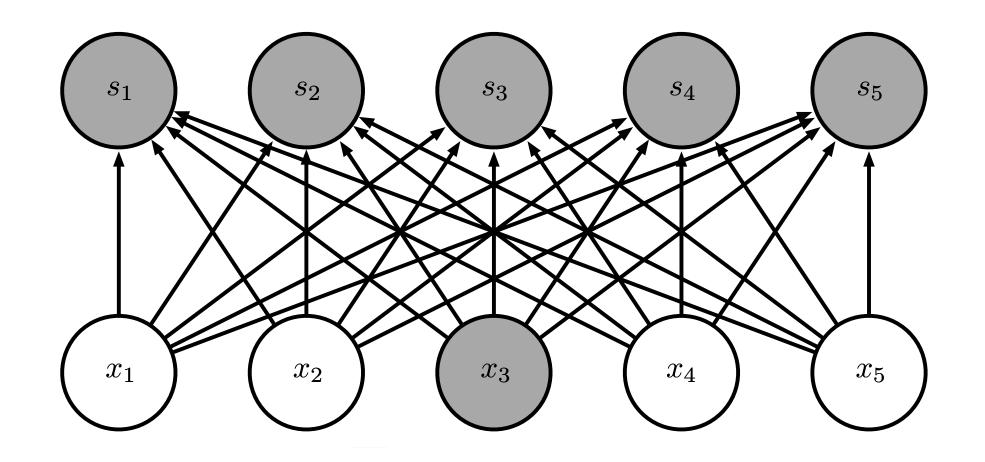
- For a large image, the number of parameters will be very large
 - For 32x32 greyscale image, hidden layer of 512 units hidden layer of 256 units, $1024 \times 512 + 512 \times 256 + 256 \times 10$ = **657,920 weights** (and 1802 offsets)
 - Needs lots of data to train
- Want to generalize over transformations of the input

zero one nine =

- Introduce two new operations:
 - 1. Convolutions
 - 2. Pooling
- Efficient **learning** via:
 - 1. Sparse interactions
 - 2. Parameter sharing
 - 3. Equivariant representations

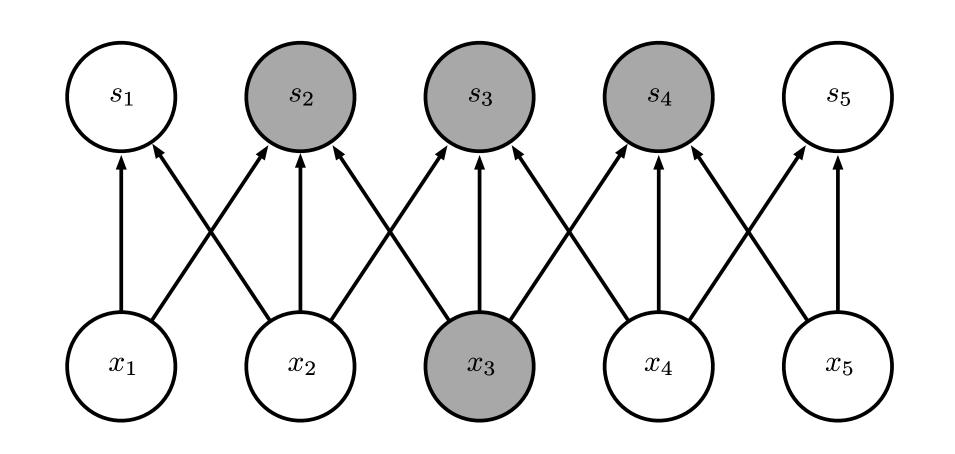
Convolutional Neural Networks

Convolutional neural networks: a specialized architecture for image recognition



Dense connections

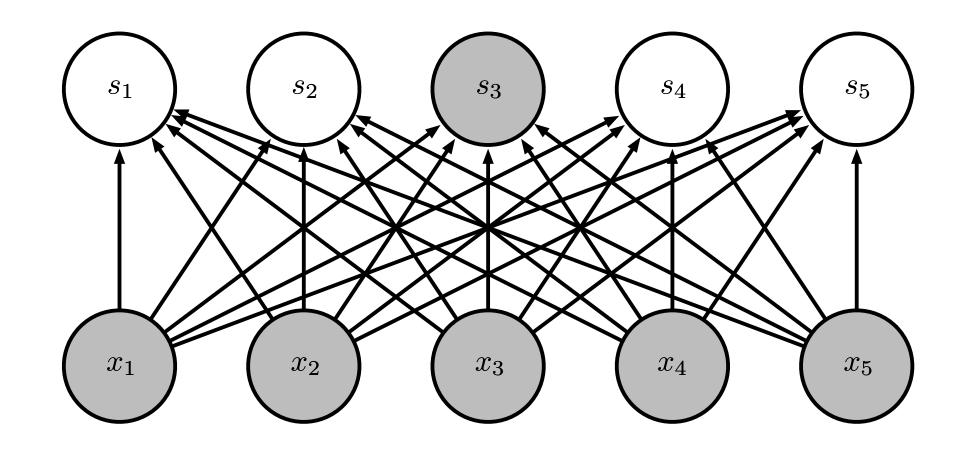
Sparse connections



 S_1

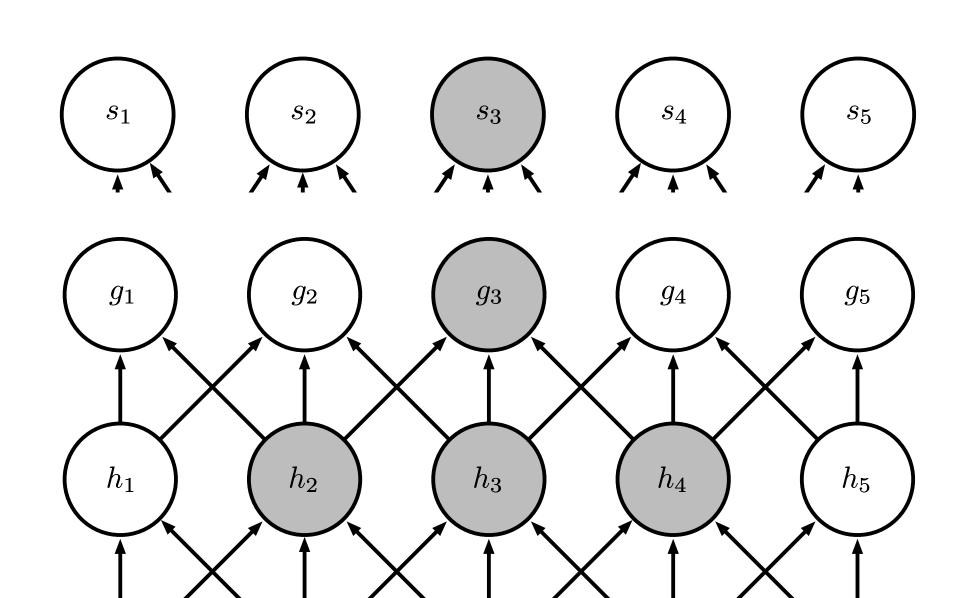
1. Sparse Interactions

(Images: Goodfellow 2016)



Dense connections

Sparse connections



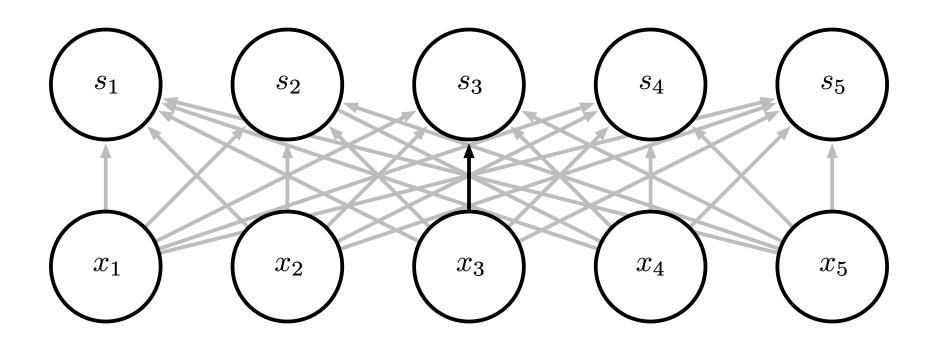
1. Sparse Interactions

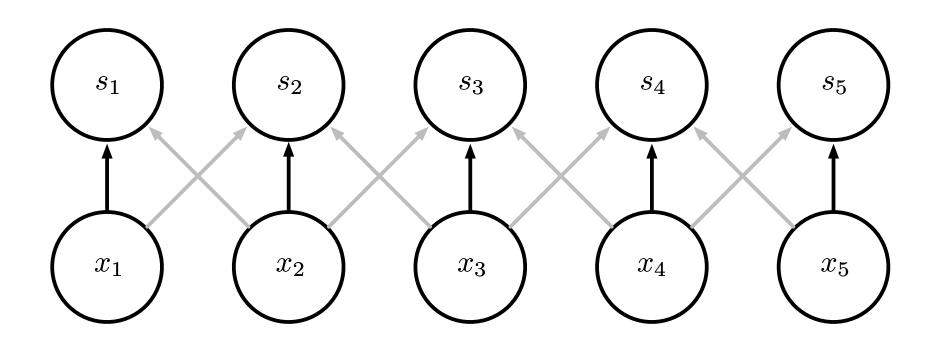
nages: Goodfellow 2016)

2. Parameter Sharing

Traditional neural nets learn a unique value for each connection

Convolutional neural nets constrain multiple parameters to be equal $x_1 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_5$





 s_3

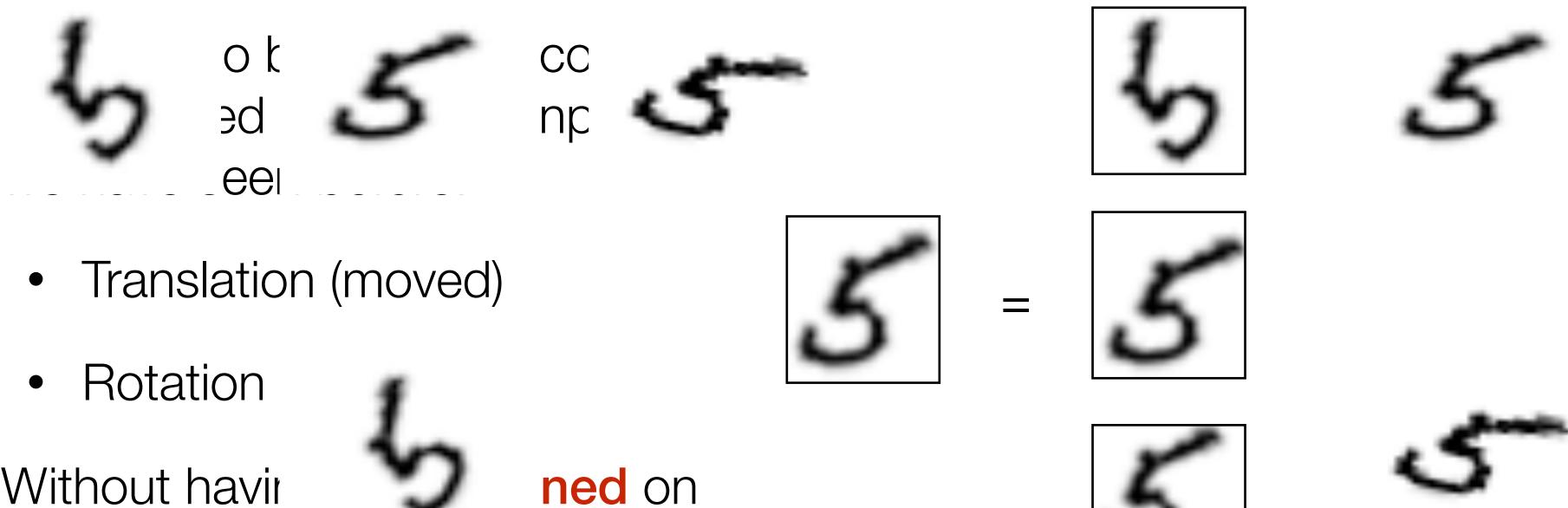
 s_1

 s_2

 s_4

(Images: Goodfellow 2016)

3. Equivariant Representations



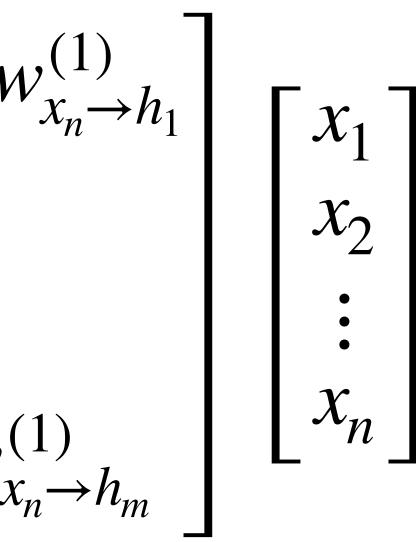
- Without havir all transformed versions

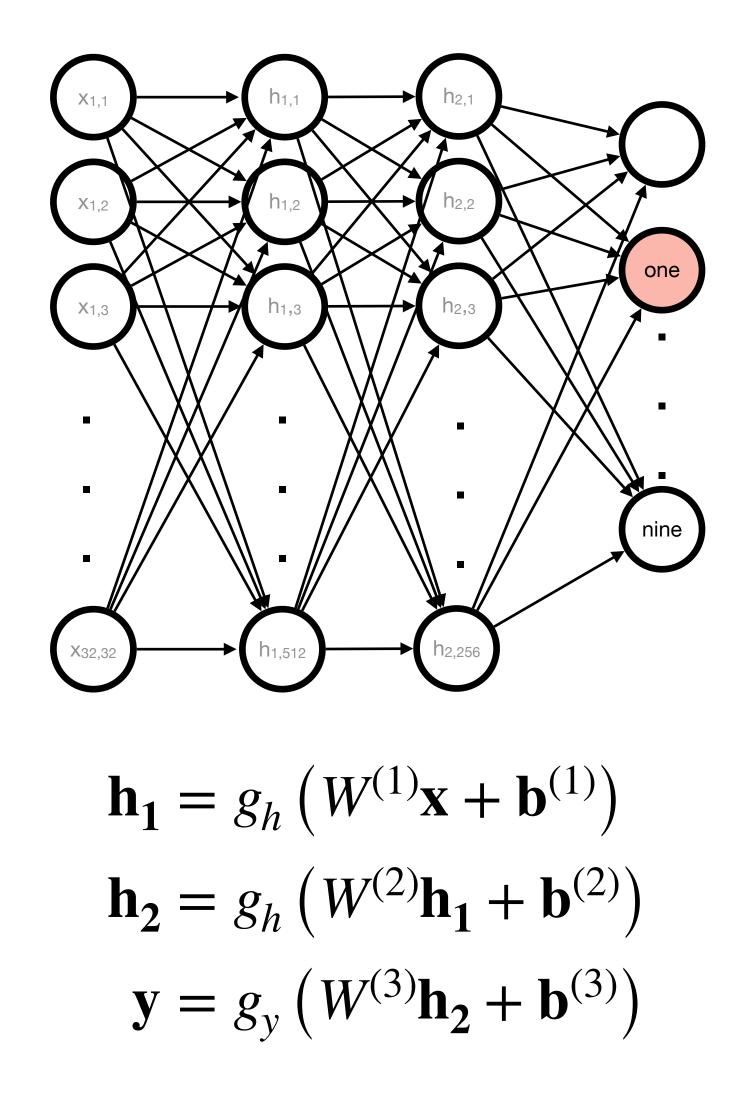
Operation: Matrix Product

Recall that we can represent the **activations** in a neural network by a **matrix product**

$$W^{(1)}\mathbf{x} = \begin{bmatrix} w_{x_1 \to h_1}^{(1)} & w_{x_2 \to h_1}^{(1)} & \cdots & w_{x_{1} \to h_2}^{(1)} \\ \vdots \\ w_{x_1 \to h_2}^{(1)} & \vdots \\ w_{x_1 \to h_m}^{(1)} & w_{x_n}^{(1)} \end{bmatrix}$$

(Image: Goodfellow 2016)

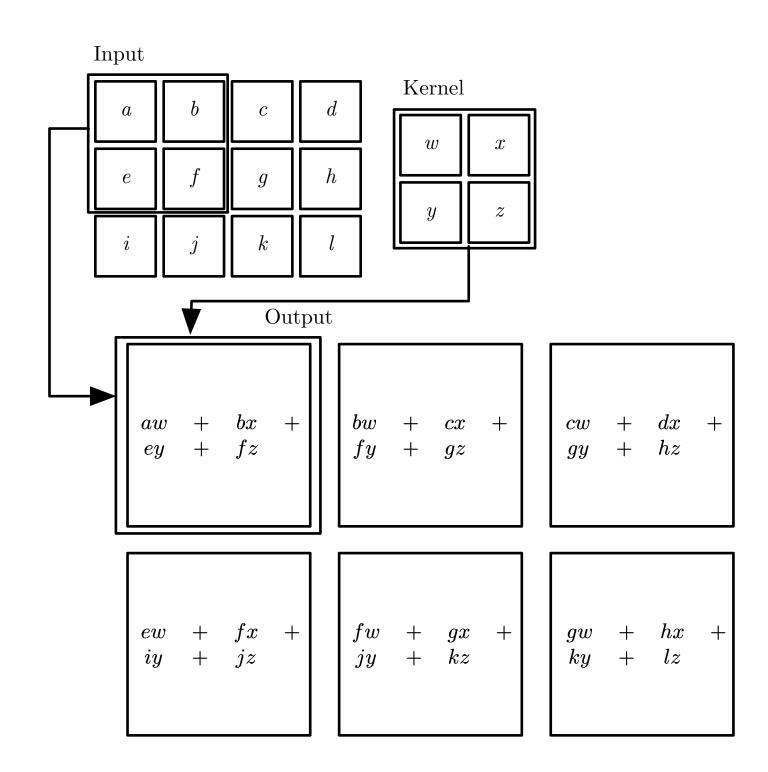




Operation: 2D Convolution

Convolution scans a small block of weights (called the **kernel**) over the elements of the inputs, taking weighted averages

- Note that input and output dimensions need not match
- Same weights used for very many combinations



(Image: Goodfellow 2016)

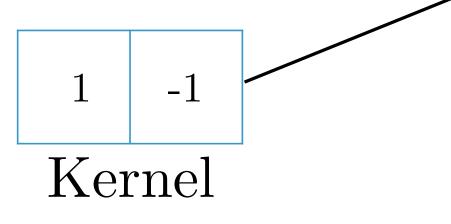
Replace Matrix Multiplication by Convolution

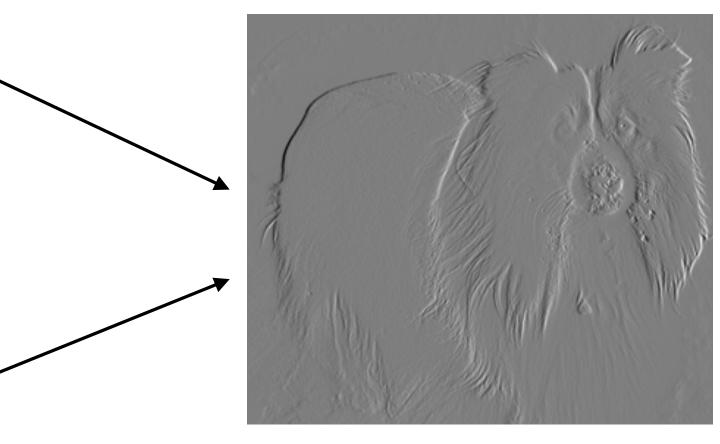
Main idea: Replace matrix multiplications with convolutions

- Sparsity: Inputs only combined with neighbours
- Parameter sharing: Same kernel used for entire input

Example: Edge Detection

Input





Output

(Image: Goodfellow 2016)

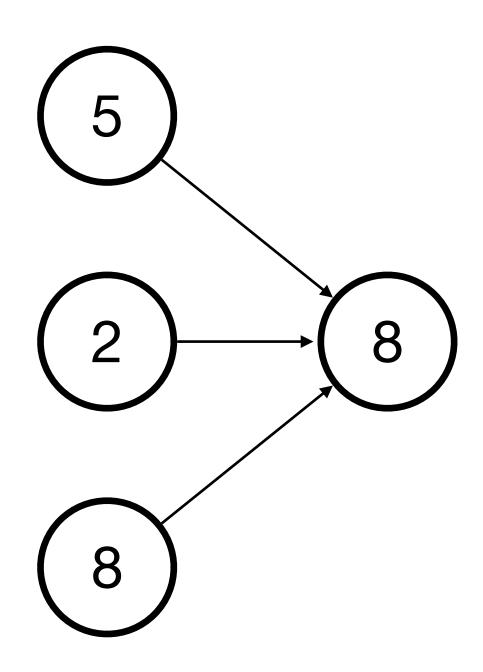
Efficiency of Convolution

Input size: 320 by 280 Kernel size: 2 by 1 Output size: 319 by 280

	Dense matrix	Sparse matrix	Convolution
Stored floats	319*280*320*280 > 8e9	2*319*280 = 178,640	2
Float muls or adds	> 16e9	Same as convolution (267,960)	319*280*3 = 267,960

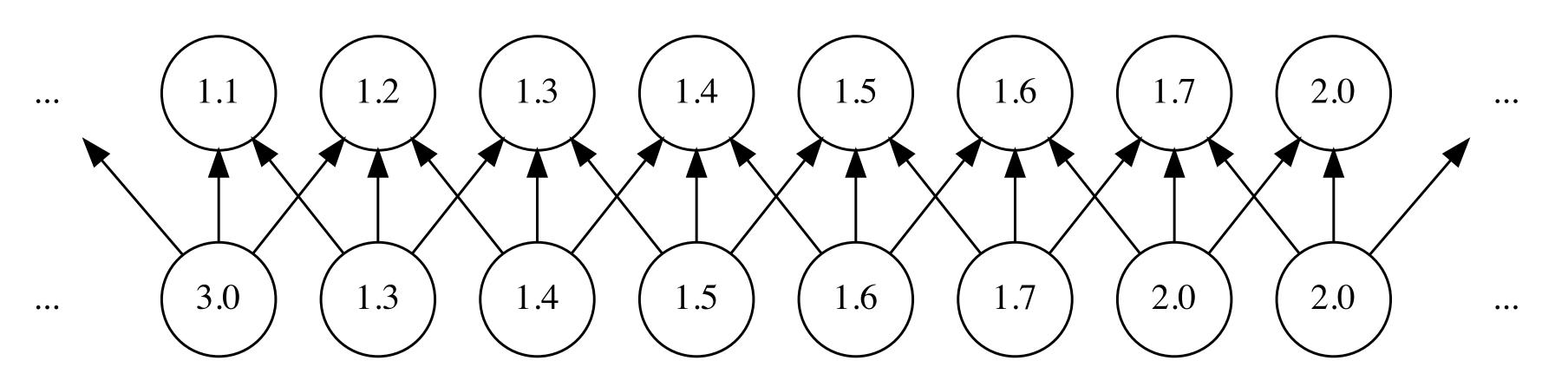
Operation: Pooling

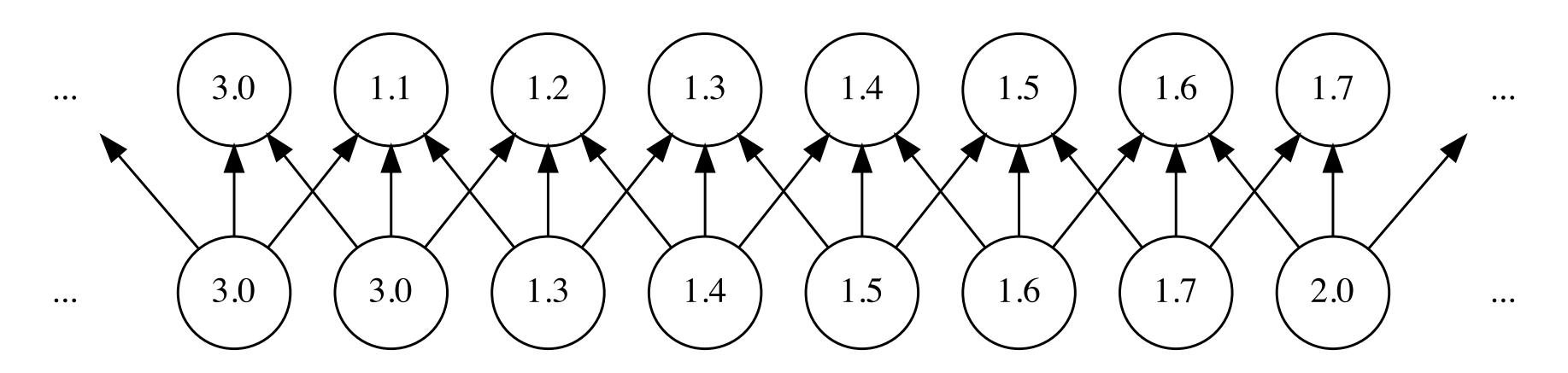
- Pooling **summarizes** its inputs into a single value, e.g.,
 - max
 - average
- Max-pooling is **parameter-free** (no bias or edge weights)



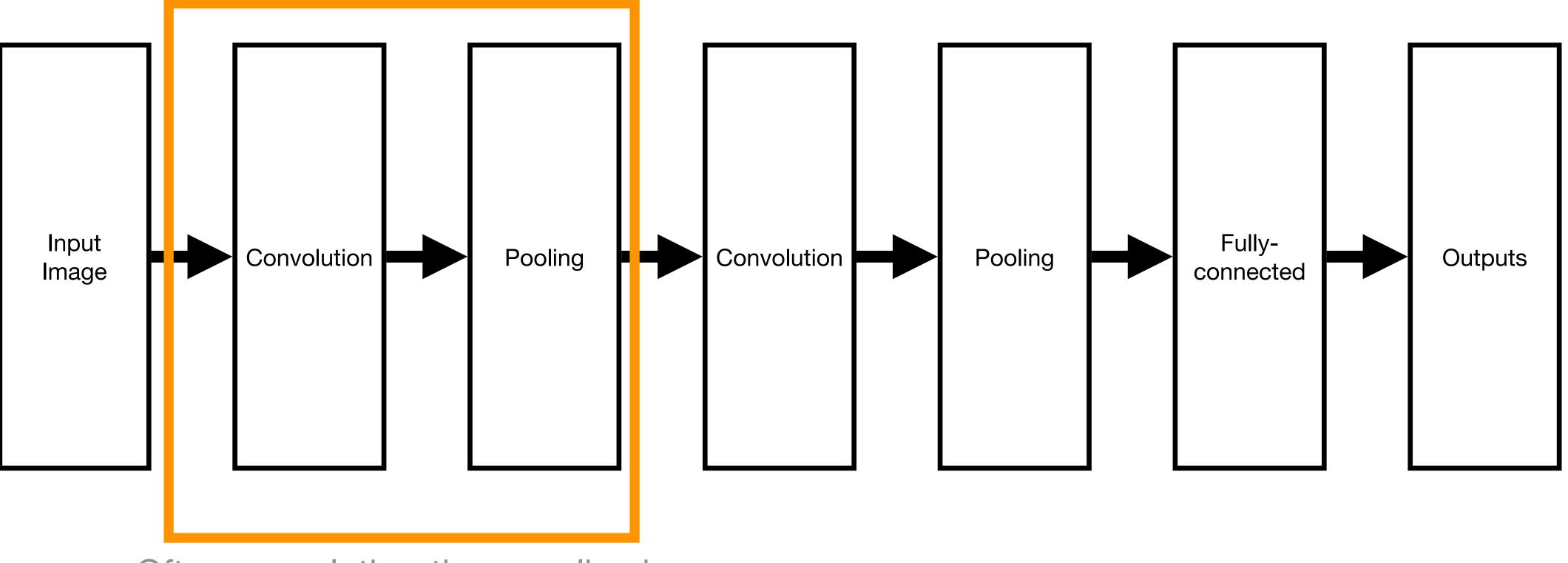
Example:

Translation Equivariance





Typical Architecture



Often convolution-then-pooling is collectively referred to as a "convolution layer"

Summary

- \bullet quantities of **parameters** (and hence **data**)
- Convolutional networks add pooling and convolution
 - Sparse connectivity
 - Parameter sharing
 - Translation equivariance
- Fewer parameters means far more efficient to train

Classifying images with a standard feedforward network requires vast