Monte Carlo Control

CMPUT 366: Intelligent Systems

S&B §5.3-5.5, 5.7

Lecture Outline

- 1. Recap
- 2. Estimating Action Values
- 3. Monte Carlo Control
- 4. Importance Sampling
- 5. Off-Policy Monte Carlo Control

Assignment #3

- Assignment #3 is due Friday (Mar 25) at 11:59pm
 - This is a firm deadline lacksquare
 - TAs have office hours every day this week

Recap: Policy Evaluation

Question: How can we compute v_{π} ?

- 1. We know that v_{π} is the unique solution to the Bellman equations, so we could just solve them (treating $v_{\pi}(s_1), \ldots, v_{\pi}(s_{|\mathcal{S}|})$ as variables)
 - but that is tedious and annoying and slow (it's a system of |S| nonlinear equations) (it's a system of $|\mathcal{S}|$ linear equations in $|\mathcal{S}|$ unknowns)

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s',r} p(s', r)$$

Also requires a complete model of the dynamics

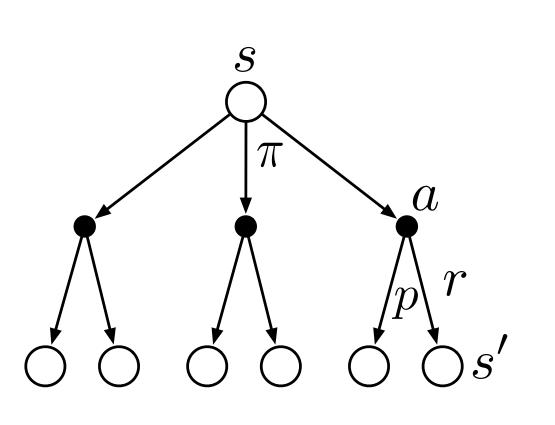
2. Iterative policy evaluation

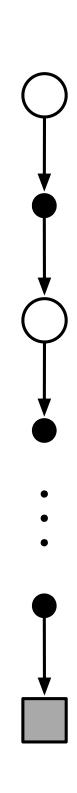
• Takes advantage of the recursive formulation

- $|s,a)[r + \gamma v_{\pi}(s')]$

Recap: Monte Carlo vs. Dynamic Programming

- Iterative policy evaluation uses the estimates of the next state's value to update the value of this state
 - Only needs to compute a single transition to update a state's estimate
- Monte Carlo estimate of each state's value is independent from estimates of other states' values
 - Needs the entire episode to compute an update
 - Can focus on evaluating a subset of states if desired





First-visit Monte Carlo Prediction

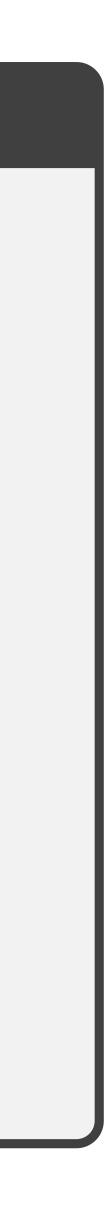
First-visit MC prediction, for estimating $V \approx v_{\pi}$

Input: a policy π to be evaluated Initialize:

> $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in S$ $Returns(s) \leftarrow an empty list, for all <math>s \in S$

Loop forever (for each episode): Generate an episode following $\pi: S_0, A_0, R_1, S_1, A_1, R_2, ..., S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T - 1, T - 2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$: Append G to $Returns(S_t)$

 $V(S_t) \leftarrow \operatorname{average}(Returns(S_t))$



Control vs. Prediction

- **Prediction:** estimate the value of states and/or actions given some fixed policy π
- **Control:** estimate an **optimal policy**

- When we know the dynamics $p(s', r \mid s, a)$, an estimate of state values is sufficient to determine a good **policy**:
 - Choose the action that gives the best combination of reward and next-state value:

$$\hat{a}^* = \arg\min_{a \in \mathscr{A}} \sum_{s', r} p(s', r \mid s, a) [r + \gamma \hat{v}(s')]$$

- If we don't know the dynamics, state values are **not enough**
 - To estimate a good policy, we need an explicit estimate of action values

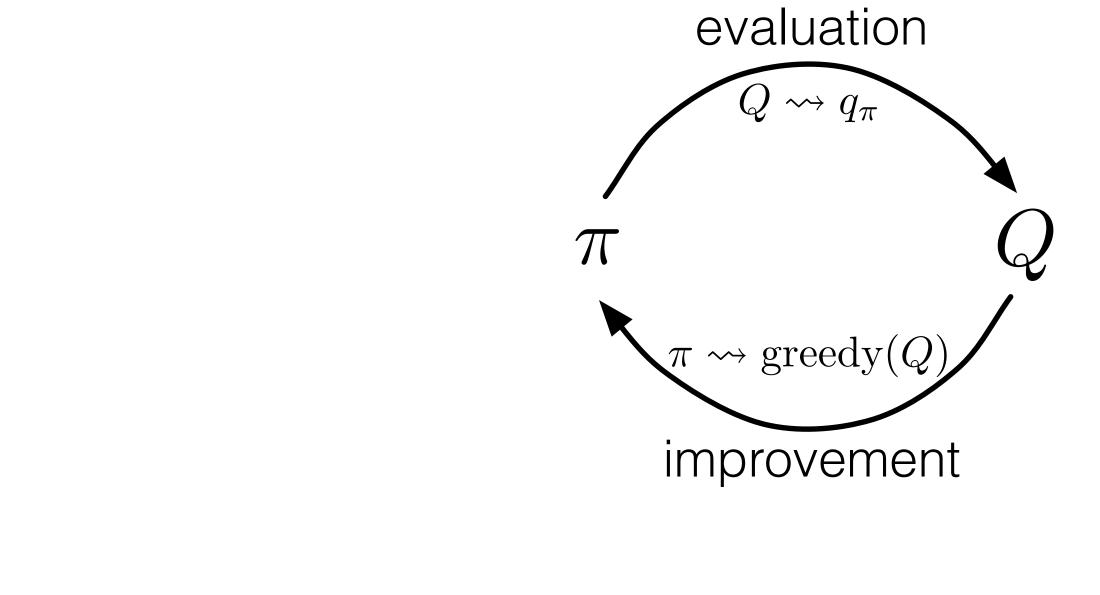
Estimating Action Values

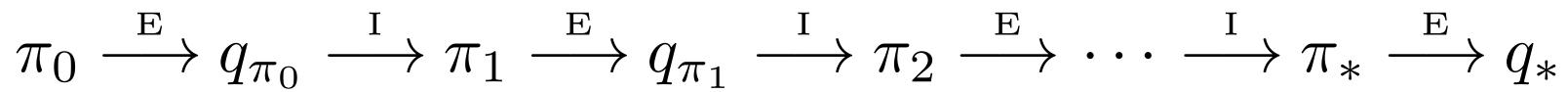
Exploring Starts

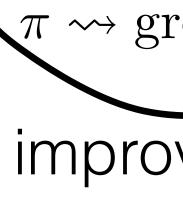
- We can just run first-visit Monte Carlo and approximate the returns to each state-action pair
- Question: What do we do about state-action pairs that are never visited?
 - If the current policy π never selects an action a from a state s, then Monte Carlo can't estimate its value
- Exploring starts assumption:
 - Every episode starts at a random state-action pair S_0, A_0
 - Every pair has a positive probability of being selected for a start

Monte Carlo Conti

Monte Carlo control can be used for **policy iteration**







Monte Carlo Control with Exploring Starts

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

Initialize:

 $\pi(s) \in \mathcal{A}(s)$ (arbitrarily), for all s $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all s $Returns(s, a) \leftarrow empty list, for al$

Loop forever (for each episode): Choose $S_0 \in S$, $A_0 \in \mathcal{A}(S_0)$ randomly such that all pairs have probability > 0 Generate an episode from S_0, A_0 , following $\pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, t = $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t, A_t appears Append G to $Returns(S_t,$ $Q(S_t, A_t) \leftarrow \operatorname{average}(Retu$

 $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

Question: What **unlikely assumptions** does this rely upon?

$$\begin{array}{l} \in \mathbb{S} \\ \in \mathbb{S}, \ a \in \mathcal{A}(s) \\ \mathrm{ll} \ s \in \mathbb{S}, \ a \in \mathcal{A}(s) \end{array} \end{array}$$

$$T - 1, T - 2, \dots, 0$$
:

s in
$$S_0, A_0, S_1, A_1 \dots, S_{t-1}, A_{t-1}$$
:
, A_t)
 $erns(S_t, A_t)$)

- The exploring starts assumption requires that we see every state-action pair with positive probability
 - Even if π never chooses a from state s
- Another approach: Simply force π to (sometimes) choose a!
- An ϵ -soft policy is one for which $\pi(\epsilon)$
- **Example:** *c*-greedy policy \bullet

$$\pi(a \mid s) = \begin{cases} \frac{\epsilon}{\mid \mathscr{A} \mid} \\ (1 - \epsilon) + \epsilon \end{cases}$$

ε -Soft Policies

$$|a|s) \ge \frac{\epsilon}{|\mathscr{A}(s)|} \quad \forall s, a$$

if $a \notin \arg \max_a Q(s, a)$,

otherwise. \mathcal{A}

Monte Carlo Control w/out Exploring Starts

Algorithm parameter: small $\varepsilon > 0$ Initialize:

 $\pi \leftarrow$ an arbitrary ε -soft policy $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all s $Returns(s, a) \leftarrow empty list, for all$

Repeat forever (for each episode): Generate an episode following π : S $G \leftarrow 0$ Loop for each step of episode, t = $G \leftarrow \gamma G + R_{t+1}$ Unless the pair S_t, A_t appears i Append G to $Returns(S_t, A)$

 $Q(S_t, A_t) \leftarrow \operatorname{average}(Return$ $A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$ For all $a \in \mathcal{A}(S_t)$:

 $\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon_t \\ \varepsilon/|\mathcal{A}(S_t)| \end{cases}$

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

$$S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$$

$$T - 1, T - 2, \dots, 0$$
:

$$\inf_{\substack{s_t \\ s_t \\ s(S_t, A_t)}} S_0, S_1, A_1 \dots, S_{t-1}, A_{t-1}:$$

(with ties broken arbitrarily)

$$\begin{aligned} &|\mathcal{A}(S_t)| & \text{if } a = A^* \\ &| & \text{if } a \neq A^* \end{aligned}$$

Monte Carlo Control w/out Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

Algorithm parameter: small $\varepsilon > 0$ Initialize:

 $\pi \leftarrow$ an arbitrary ε -soft policy

 $Q(s, a) \in \mathbb{R}$ (arbitrarily), for all $s \in S$, $a \in \mathcal{A}(s)$ $Returns(s, a) \leftarrow \text{empty list, for all } s \in S, a \in \mathcal{A}(s)$

Repeat forever (for each episode): Generate an episode following $\pi: S_0, A_0, R_1, \ldots$ $G \leftarrow 0$

Loop for each step of episode, $t = T - 1, T - 2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$

Unless the pair S_t, A_t appears in $S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}$: Append G to $Returns(S_t, A_t)$

 $Q(S_t, A_t) \leftarrow \operatorname{average}(Returns(S_t, A_t))$

 $A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$

For all $a \in \mathcal{A}(S_t)$:

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon / |\mathcal{A}(S_t)| & \text{if } e \\ \varepsilon / |\mathcal{A}(S_t)| & \text{if } e \end{cases}$$

$$, S_{T-1}, A_{T-1}, R_T$$

(with ties broken arbitrarily)

 $a = A^*$ $a \neq A^*$

Question:

Will this procedure converge to the **optimal** policy π^* ?

Why or why not?

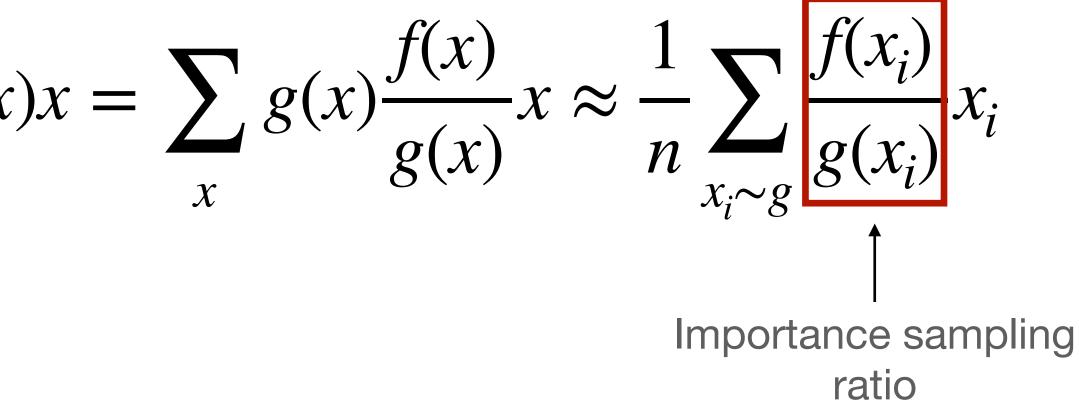
Importance Sampling

- \bullet estimate expectations
- Importance sampling: Use samples from proposal distribution to \bullet

$$\mathbb{E}[X] = \sum_{x} f(x)x = \sum_{x} \frac{g(x)}{g(x)} f(x)$$

Monte Carlo sampling: use samples from the target distribution to

estimate expectations of target distribution by reweighting samples



Off-Policy Prediction via Importance Sampling

Definition: learn about a distinct target policy. Target

Off-policy learning means using data generated by a **behaviour policy** to Proposal distribution distribution

Off-Policy Monte Carlo Prediction

- Generate episodes using **behaviour policy** b \bullet
- a visit to s to estimate $v_{\pi}(s)$
 - $S_t = s$ until the end of the episode:

$$\rho_{t:T-1} \doteq \frac{\Pr[A_t, S_{t+1}, \dots, S_T | S_t, A_{t:T-1} \sim \pi]}{\Pr[A_t, S_{t+1}, \dots, S_T | S_t, A_{t:T-1} \sim b]}$$

• Take weighted average of returns to state s over all the episodes containing

• Weighed by importance sampling ratio of trajectory starting from

Importance Sampling Ratios for Trajectories

•

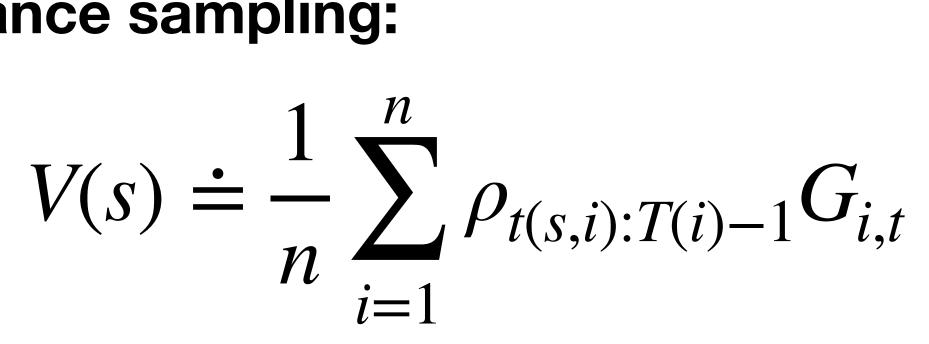
Probability of a trajectory
$$A_t, S_{t+1}, A_{t+1}, \dots, S_T$$
 from S_t :

$$Pr[A_t, S_{t+1}, \dots, S_T | S_t, A_{t:T-1} \sim \pi] = \pi(A_t | S_t)p(S_{t+1} | S_t, A_t)\pi(A_{t+1} | S_{t+1})\dots p(S_T | S_{T-1}, A_{T-1})$$
Importance sampling ratio for a trajectory $A_t, S_{t+1}, A_{t+1}, \dots, S_T$ from S_t :

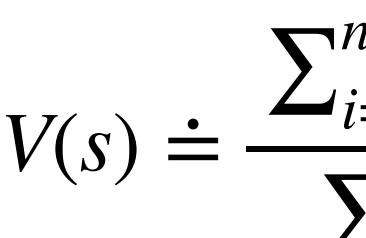
$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k | S_k) p(S_{k+1} | S_k, A_k)} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k)}{\prod_{k=t}^{T-1} b(A_k | S_k) p(S_{k+1} | S_k, A_k)} = 1$$

Ordinary vs.Weighted Importance Sampling

Ordinary importance sampling:

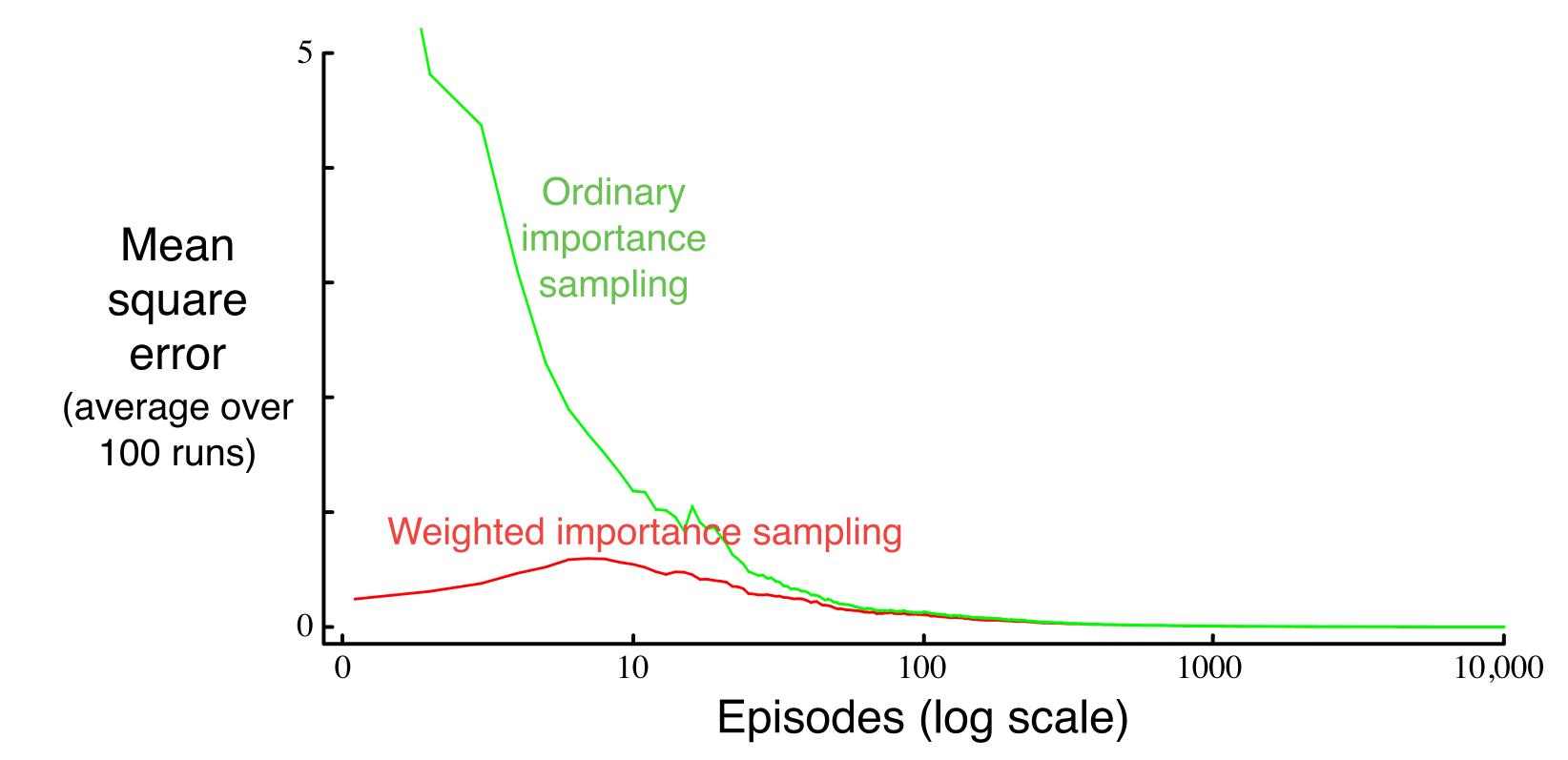


Weighted importance sampling: \bullet



 $V(s) \doteq \frac{\sum_{i=1}^{n} \rho_{t(s,i):T(i)-1} G_{i,t}}{\sum_{i=1}^{n} \rho_{t(s,i):T(i)-1}}$

Example: Ordinary vs. Weighted Importance Sampling for Blackjack



single blackjack state from off-policy episodes.

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a

(Image: Sutton & Barto, 2018)

Off-Policy Monte Carlo Prediction

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_{\pi}$

Input: an arbitrary target policy π Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \in \mathbb{R}$ (arbitrarily) $C(s,a) \leftarrow 0$

Loop forever (for each episode): $b \leftarrow$ any policy with coverage of π Generate an episode following b: S $G \leftarrow 0$ $W \leftarrow 1$ Loop for each step of episode, $t = T - 1, T - 2, \ldots, 0$, while $W \neq 0$: $G \leftarrow \gamma G + R_{t+1}$ $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)}$ $W \leftarrow W \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$

$$S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$$

$$\overline{A_t}\left[G - Q(S_t, A_t)\right]$$

Off-Policy Monte Carlo Control

Off-policy MC control, for estimating $\pi \approx \pi_*$

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \in \mathbb{R}$ (arbitrarily) $C(s,a) \leftarrow 0$ $\pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a)$ (with ties broken consistently) Loop forever (for each episode): $b \leftarrow any soft policy$ Generate an episode using b: S_0, A $G \leftarrow 0$ $W \leftarrow 1$ Loop for each step of episode, $t = T - 1, T - 2, \ldots, 0$: $G \leftarrow \gamma G + R_{t+1}$ $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} \left[G - Q(S_t, A_t) \right]$ $\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$ (with ties broken consistently) If $A_t \neq \pi(S_t)$ then exit inner Loop (proceed to next episode) $W \leftarrow W \frac{1}{b(A_t|S_t)}$

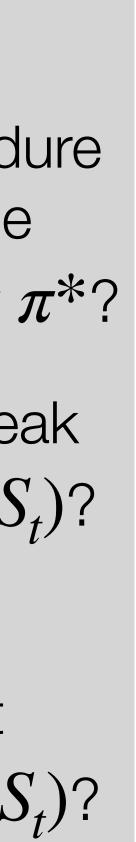
$$A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$$

Off-Policy Monte Carlo Control

Off-policy MC control, for estimating $\pi \approx \pi_*$

Questions:

- Will this procedure converge to the **optimal** policy π^* ?
- Why do we break when $A_t \neq \pi(S_t)$?
- Why do the 3. weights W not involve $\pi(A_t \mid S_t)$?



Summary

- Estimating action values requires either exploring starts or a soft policy (e.g., *c*-greedy)
- Off-policy learning is the estimation of value functions for a target policy based on episodes generated by a different behaviour policy
 - Importance sampling is one way to perform off-policy learning
 - Weighted importance sampling has lower variance than ordinary importance sampling
- Off-policy control is learning the optimal policy (target policy) using episodes from a behaviour policy