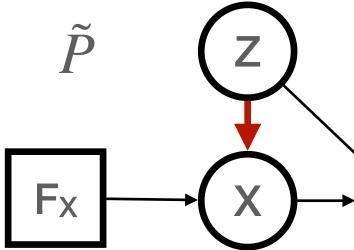
Supervised Learning Intro

CMPUT 366: Intelligent Systems

P&M §7.1-7.2

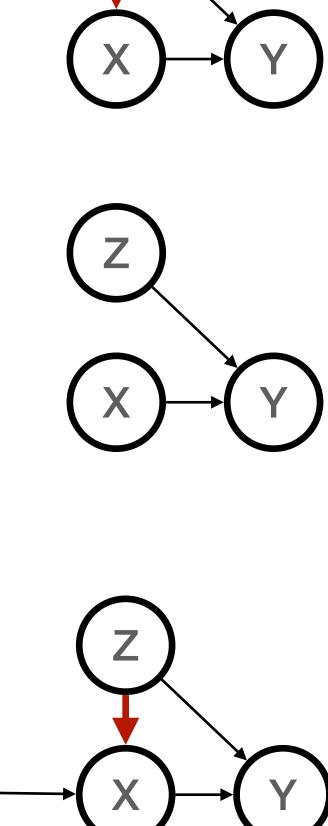
Recap: Causal Inference

- Observational queries $P(Y \mid X = x)$ are different from causal queries $P(Y \mid do(X = x))$
- To evaluate **causal query** $P(Y \mid do(X = x))$:
 - 1. Construct post-intervention distribution \hat{P} by removing all links from X's direct parents to X
 - 2. Evaluate the observational query $\hat{P}(Y \mid X = x)$ in the post-intervention distribution
- Alternative representation: Influence diagrams
 - **Causal** query in the augmented distribution: $\tilde{P}(Y \mid F_X = x)$
 - Observational query in the augmented distribution: $\tilde{P}(Y \mid X = x, F_X = idle) \mid F_X$
- Not every correct Bayesian network is a valid causal model



P

P



Lecture Outline

- 1. Recap
- 2. Supervised Learning Problem
- 3. Measuring Prediction Quality

Supervised Learning

Definition: A supervised learning task consists of

- A set of input features X_1, \ldots, X_n
- A set of **target features** Y_1, \ldots, Y_k
- A set of **test examples**, for which only the input features are given

The goal is to predict the values of the target features given the input features; i.e., learn a function h(x) that will map features X to a prediction of Y

- Classification: Y_i are discrete
- **Regression:** *Y_i* are **real-valued**

• A set of training examples, for which both input and target features are given

Regression Example

- Aim is to predict the value of target Y based on features X
- Both X and Y are real-valued
 - Exact values of both targets and features may not have been in the training set
 - e_8 is an interpolation problem: X is within the range of the training examples' values
 - e_9 is an **extrapolation** problem: X is **outside** the range of the training examples' values

Ex.	X	Υ	
e1	0.7	1.7	
e2	1.1	2.4	
e ₃	1.3	2.5	
e 4	1.9	1.7	
e 5	2.6	2.1	
e ₆	3.1	2.3	
e 7	3.9	7	

e ₈	2.9	?
e 9	5.0	?

Data Representation

- For real-valued features, we typically just record the feature values
- For **discrete** features, there are multiple options:
 - Binary features: Can code $\{false, true\}$ as $\{0,1\}$ or $\{-1,1\}$
 - Can record numeric values for each possible value
 - Cardinal values: Differences are meaningful (e.g., 1, 2, 7)
 - Ordinal values: Order is meaningful (e.g., Good, Fair, Poor)
 - Categorical values: Neither differences nor order meaningful (e.g., Red, Green, Blue)
 - Vector of **indicator variables**: One per feature value, exactly one is true (sometimes called a "one-hot" encoding) (e.g., *Red* as (1,0,0), *Green* as (0,1,0), etc.)

Classification Example: Holiday Preferences

- An agent wants to learn a person's preference for the length of holidays
- Holiday can be for 1,2,3,4,5, or 6 days
- Two possible representations:

Ex.	Y
e ₁	1
e 2	6
e3	6
e 4	2
e 5	1

Ex.	Y ₁	Y ₂	Y 3	Y 4	Y 5	Y 6
e ₁	1	0	0	0	0	0
e 2	0	0	0	0	0	1
e 3	0	0	0	0	0	1
e 4	0	1	0	0	0	0
e 5	1	0	0	0	0	0

Generalization

- Question: What does it mean for a (supervised) learning agent to perform well?
- We want to be able to make correct predictions on **unseen** data, not just the training examples
 - We are even willing to sacrifice some training accuracy to achieve this
 - We want our learners to generalize: to go beyond the given training examples to classify new examples well
 - **Problem:** We can't observe performance on unobserved examples!
- We can estimate generalization performance by evaluating performance on the test set (Why?)
 - The learning algorithm doesn't have access to the test data, but we do

Generalization Example

Example: Consider binary two classifiers, **P** and **N**

- P classifies all the **positive examples** from the training data as *true*, and all others as *false*
- N classifies all of the **negative examples** from the training data as *false*, and all others as *true*

Question: Which classifier **generalizes** better?

- **Question:** Which classifier performs better on the training data?

- The **hypothesis** is the function h(X) that we learn
- The hypothesis space is the set of possible hypotheses
- A preference for one hypothesis over another is called **bias**
 - Bias is not a bad thing in this context!
 - Preference for "simple" models is a bias
 - Which bias works best for generalization is an empirical question

Bias

- learning can be reduced to search
- the data given the bias
 - Search space is prohibitively large (typically infinite)
 - Almost all machine learning methods are versions of local search

Learning as Search

• Given training data, a hypothesis space, an error measurement, and a bias,

• Learning searches the hypothesis space trying to find the hypothesis that best fits

Measuring Prediction Error

- We choose our hypothesis partly by measuring its performance on training data
 - **Question:** What is the other consideration?
- This is usually described as minimizing some quantitative measurement of error (or loss)
 - Question: What might error mean?

Definition:

for which the prediction was not correct:

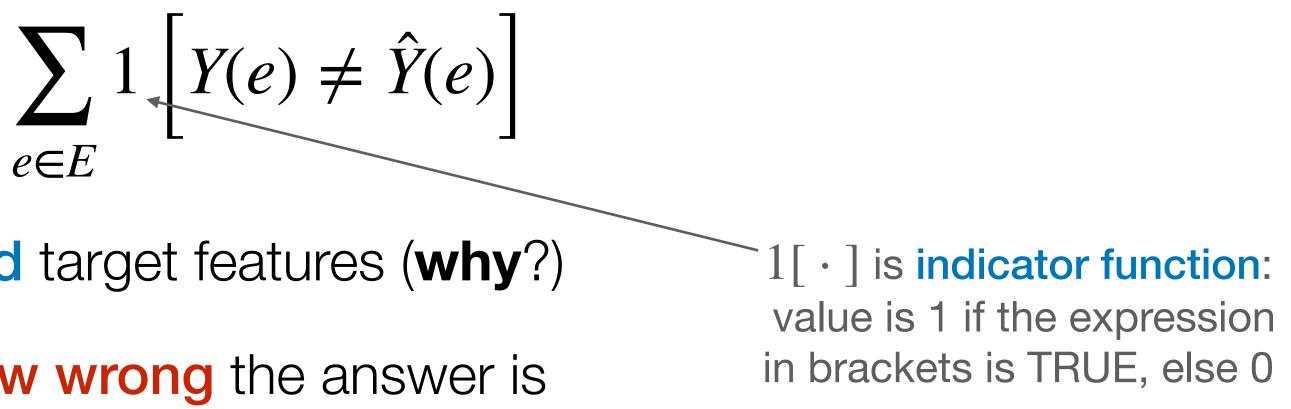
- $e \in E$
- Not appropriate for **real-valued** target features (**why**?) \bullet
- Does not take into account how wrong the answer is

• e.g.,
$$1 \left[2 \neq 1 \right] = 1 \left[6 \neq 1 \right]$$

Most appropriate for **binary** or **categorical** target features \bullet

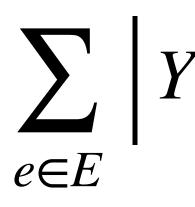
0/1 Error

The 0/1 error for a dataset E of examples and hypothesis Y is the number of examples



Absolute Error

Definition:



- Meaningless for **categorical** variables lacksquare
- Takes account of how wrong the predictions are
- Most appropriate for **cardinal** or *possibly* **ordinal** values

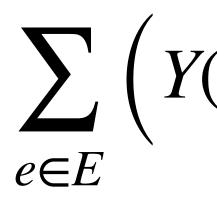
The absolute error for a dataset E of examples and hypothesis \hat{Y} is the sum of absolute distances between the predicted target value and the actual target value:

$$Y(e) - \hat{Y}(e)$$

Squared Error

Definition:

The squared error (or sum of squares error or mean squared error) for a dataset Eof examples and hypothesis \hat{Y} is the sum of squared distances between the predicted target value and the actual target value:



- Meaningless for **categorical** variables
- Takes account of how wrong the predictions are
 - Large errors are much more important than small errors
- Most appropriate for cardinal values •

$$(e) - \hat{Y}(e) \Big)^2.$$

Worst-Case Error

Definition:

- Meaningless for **categorical** variables \bullet
- Takes account of how wrong the predictions are
 - but only on one example (the one whose prediction is furthest from the true target)
- Most appropriate for cardinal values

- The worst-case error for a dataset E of examples and hypothesis \dot{Y} is the maximum absolute difference between the predicted target value and the actual target value:
 - $\max_{e \in E} \left| Y(e) \hat{Y}(e) \right| \, .$

Probabilistic Predictors

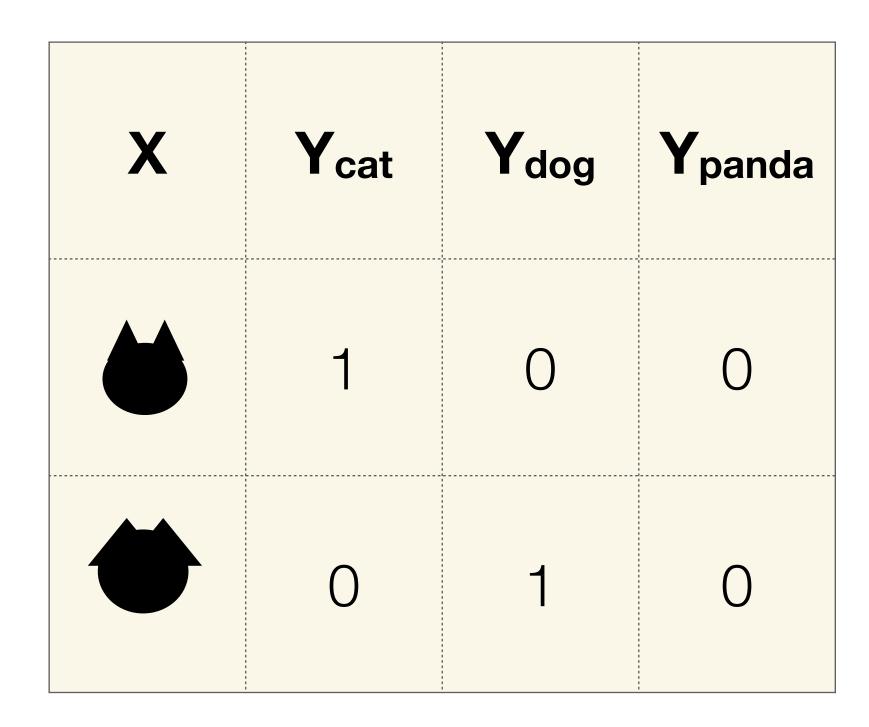
- Rather than predicting exactly what a target value will be, many common algorithms predict a **probability distribution** over possible values
 - Especially for classification tasks
- scheme:

 - Predicted target values are probabilities that sum to 1

Vectors of indicator variables are the most common data representation for this

• Target features of training examples have a single 1 for the true value

Probabilistic Predictions Example



X	Ŷcat	Ŷdog	Ŷpanda
	0.5	0.45	0.05

Likelihood

• For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

Definition:

The likelihood for a dataset E of examples and hypothesis Y is the probability of independently observing the examples according to the probabilities assigned by the hypothesis:

$$\Pr(E) =$$

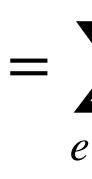
- This has a clear Bayesian interpretation
- Numerical stability issues: product of probabilities shrinks exponentially! lacksquare
 - *Example:* Probability of any sequence of 1000 coin tosses has probability 2^{-1000} !
 - Floating point underflows almost immediately

$$\prod_{e \in E} \hat{Y}(e = Y(e)).$$

Log-Likelihood

Definition:

 $\log \Pr(E) = 1$



- Taking log of the likelihood fixes the underflow issue (**why**?)
- The log function grows monotonically, so maximizing log-likelihood is the same thing as \bullet maximizing likelihood:

$$\left(\Pr(E \mid \hat{Y}_1) > \Pr(E \mid \hat{Y}_2)\right) \iff \left(\log\Pr(E \mid \hat{Y}_1) > \log\Pr(E \mid \hat{Y}_2)\right)$$

The log-likelihood for a dataset E of examples and hypothesis Y is the log-probability of independently observing the examples according to the probabilities assigned by the hypothesis:

$$\log \prod_{e \in E} \hat{Y}(e = Y(e))$$
$$\sum_{e \in E} \log \hat{Y}(e = Y(e)).$$

Summary

- Supervised learning is learning a hypothesis function from training examples
 - Maps from input features to target features
 - Classification: Discrete target features
 - Regression: Real-valued target features
- Preferences among hypotheses are called bias
 - An important component of learning!
- Choice of error measurement (loss) is an important design decision
 - Each loss has its own advantages/disadvantages