Uninformed Search

CMPUT 366: Intelligent Systems

| ogistics

* [A office hours begin next week

» See eClass page for times and meeting links

* Assignment #1 released next week

* Python tutorials next week during TA office hours

* Further detalls forthcoming

Recap: Graph Search

« Many Al tasks can be represented as search problems

* A single generic graph search algorithm can then solve
them all!

* A search problem consists of states, actions, start states, a

successor function, a goal function, optionally a cost
function

* Solution quality can be represented by labelling arcs of the
search graph with costs

Recap: Generic Graph
Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier :== { <s> | s is a start node}
while frontier Is not empty:
select a path <n1, no, ..., nk> from frontier
remove <n1, N2, ..., Nk> from frontier
if goa /(n k): https:/artint.info/2e/html/Artint2e.Ch3.S4.htm
return <n1, No, ..., N>
for each neighbour n of n«: expand
add <n1, no, ..., Nk, N> to frontier
end while

 Which value Is selected from the frontier defines the search strategy

| ecture Outline

1. Logistics & Recap

2. Properties of Algorithms and Search Graphs

3. Depth First and Breadth First Search

4. lterative Deepening Search

Algorithm Properties

What properties of algorithms do we want to analyze?

* A search algorithm is complete it it iIs guaranteed to find a solution within a
finite amount of time whenever a solution exists.

* [he time complexity of a search algorithm Is a measure of how much
time the algorithm will take to run, in the worst case.

* |n this section we measure by total number of paths added to the
frontier.

 [he space complexity of a search algorithm Is a measure of how much
space the algorithm will use, In the worst case.

 \We measure by maximum number of paths in the frontier at one time.

Search Graph Properties

What properties of the search graph do algorithmic properties depend on”

* Forward branch factor: Maximum number of neighbours
Notation: b

« Maximum path length. (Could be infinite!)
Notation: m

* Presence of cycles

* Length of the shortest path to a goal node

Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := {(s) | s is a start node}
while frontier is not empty:

select the newest path (n,, ..

remove (1, ..., ;) from frontier
if goal(ny):
return (n, ..., n;)
for each neighbour n of n:
add (n,, ..., ny, n) to frontier
end while

.,) from frontier

Question:

What data structure for the

fron’

ler Implements this search

stra

eqgy’?

Depth First Search N

Depth-first search always removes one of the longest paths from the frontier. oﬁo
Example: ¢ 9o

Frontier: [py, Py, P35 P4l
successors(p;) = {n, ny, Nz}

What happens?

1. Remove pq; test p; for goal

2. Add {{(p;,ny),{(pl,n2),{pl,n3)} to front of frontier

3. New frontier: [{p, n,), {p1,n2),(p1.,n3), Py, P, P4l

4. D, Is selected only after all paths starting with p, have been explored

Question: When is (p;, 1) selected?

Depth First Search Analysis %
.ﬁ.

For a search graph with maximum branch factor b and
maximum path length m...

1. What is the worst-case time complexity?

e [A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

2. When is depth-first search complete?

3. What is the worst-case space complexity?

e [A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

When to Use ﬂi’
Depth First Search N

N
* When is depth-first search appropriate” ¢ 9
 Memory Is restricted
* All solutions at same approximate depth

* QOrder in which neighbours are searched can be tuned to
find solution quickly

 When is depth-first search inappropriate”
* [nfinite paths exist

 \When there are likely to be shallow solutions

 Especially If some other solutions are very deep

Breadth First Search

Input: a graph; a set of start nodes; a goal function

frontier := {(s) | s is a start node}
while frontier is not empty:

select the oldest path (n,, ..

remove (1, ..., ;) from frontier
if goal(ny):
return (n, ..., n;)
for each neighbour n of n:
add (n,, ..., ny, n) to frontier
end while

.,) from frontier

Question:

What data structure for the

fron’

ler Implements this search

stra

eqgy’?

Breadth First Search /1y

Breadth-first search always removes one of the shortest paths from the
frontier.

Example:

Frontier: [py, Py, P3» P4l
successors(p,) = {ny, Ny, Ny}

What happens?

1. Remove py; test p, for goal

2. Add {{p;,n),{(pl,n2),(pl,n3)} to end of frontier:
3. New frontier: [p,, 3, Pas {P1>11), {(p1.,n2), (p1,n3)]

4. p, is selected next

Breadth First Search Analysis / AN

For a search graph with maximum branch factor b and
maximum path length m...

1. What is the worst-case time complexity?

e [A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

2. When is breadth-first search complete?

3. What is the worst-case space complexity?

e [A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

VWhen to Use /
Breadth First Search AAN

 When is breadth-first search appropriate?
* \When there might be infinite paths
 \When there are likely to be shallow solutions, or

 \When we want to guarantee a solution with fewest arcs

* When is breadth-first search inappropriate?
e [arge branching factor
* All solutions located deep in the tree

 Memory Is restricted

Comparing DFS vs. BFS

Depth-first Breadth-first

Only for finite

l,
Complete® graphs Complete
Space .
complexity O(mb) ObT)
Time - -
complexity Ob™) Ob™)

e (Can we get the space benefits of depth-first search without giving up completeness”?

* Run depth-first search to a maximum depth
* then try again with a larger maximum

» until either goal found or graph completely searched

terative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to 00:

Perform depth-first search to a maximum depth max_depth
end for

terative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to o0:
more _nodes = False

frontier := {(s) | sis a start node}
while frontier is not empty:

select the newest path (n, ..., n,) from frontier
remove (n,, ..., ;) from frontier
if goal(n,):

return (n, ..., n;)

If K < max_depth:
for each neighbour n of n;:

add (n,, ..., n, n) to frontier

else if n;, has neighbours:

more_nodes = True
end-while
If more_nodes = False:
return None

terative Deepening Search
Analysis

—or a search graph with maximum branch factor b and
Mmaximum path length m...

1. What is the worst-case time complexity?

e [A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]
2. When is iterative deepening search complete?

3. What is the worst-case space complexity?

e [A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

When to Use
terative Deepening Search

* \When is iterative deepening search appropriate?
« Memory Is limited, and
 Both deep and shallow solutions may exist
e Or we prefer shallow ones

* [ree may contain infinite paths

Summary

Different search strategies have different properties and behaviour

* Depth first search is space-efficient but not always complete or time-efficient

* Breadth first search is complete and always finds the shortest path to a goal,
but Is not space-efticient

* |terative deepening search can provide the benefits of both, at the expense
of some time-efficiency

e All three strategies must potentially expand every node, and are not
guaranteed to return an optimal solution

