
Uninformed Search

CMPUT 366: Intelligent Systems

P&M §3.5

Logistics

• TA office hours begin next week

• See eClass page for times and meeting links

• Assignment #1 released next week

• Python tutorials next week during TA office hours

• Further details forthcoming

Recap: Graph Search
• Many AI tasks can be represented as search problems

• A single generic graph search algorithm can then solve
them all!

• A search problem consists of states, actions, start states, a
successor function, a goal function, optionally a cost
function

• Solution quality can be represented by labelling arcs of the
search graph with costs

Recap: Generic Graph
Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := { <s> | s is a start node}
while frontier is not empty:
 select a path <n1, n2, ..., nk> from frontier
 remove <n1, n2, ..., nk> from frontier
 if goal(nk):
 return <n1, n2, ..., nk>
 for each neighbour n of nk: (i.e., expand node nk)
 add <n1, n2, ..., nk, n> to frontier
end while

• Which value is selected from the frontier defines the search strategy

Problem Solving by Graph Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 19 14 / 17

https://artint.info/2e/html/ArtInt2e.Ch3.S4.html

Lecture Outline

1. Logistics & Recap

2. Properties of Algorithms and Search Graphs

3. Depth First and Breadth First Search

4. Iterative Deepening Search

Algorithm Properties
What properties of algorithms do we want to analyze?

• A search algorithm is complete if it is guaranteed to find a solution within a
finite amount of time whenever a solution exists.

• The time complexity of a search algorithm is a measure of how much
time the algorithm will take to run, in the worst case.

• In this section we measure by total number of paths added to the
frontier.

• The space complexity of a search algorithm is a measure of how much
space the algorithm will use, in the worst case.

• We measure by maximum number of paths in the frontier at one time.

Search Graph Properties
What properties of the search graph do algorithmic properties depend on?

• Forward branch factor: Maximum number of neighbours
Notation:

• Maximum path length. (Could be infinite!)
Notation:

• Presence of cycles

• Length of the shortest path to a goal node

b

m

Depth First Search
Input: a graph; a set of start nodes; a function

while is not empty:
 select the newest path from
 remove from
 if :
 return
 for each neighbour of :
 add to
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

Question:

What data structure for the
frontier implements this search
strategy?

Depth First Search
Depth-first search always removes one of the longest paths from the frontier.

Example:
Frontier:

What happens?

1. Remove ; test for goal

2. Add to front of frontier

3. New frontier:

4. is selected only after all paths starting with have been explored

Question: When is selected?

[p1, p2, p3, p4]
successors(p1) = {n1, n2, n3}

p1 p1

{⟨p1, n1⟩, ⟨p1,n2⟩, ⟨p1,n3⟩}

[⟨p1, n1⟩, ⟨p1,n2⟩, ⟨p1,n3⟩, p2, p3, p4]

p2 p1

⟨p1, n3⟩

Depth First Search Analysis

For a search graph with maximum branch factor and
maximum path length ...

1. What is the worst-case time complexity?

• [A:] [B:] [C:] [D: it depends]

2. When is depth-first search complete?

3. What is the worst-case space complexity?

• [A:] [B:] [C:] [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

When to Use
Depth First Search

• When is depth-first search appropriate?
• Memory is restricted
• All solutions at same approximate depth
• Order in which neighbours are searched can be tuned to

find solution quickly

• When is depth-first search inappropriate?
• Infinite paths exist
• When there are likely to be shallow solutions

• Especially if some other solutions are very deep

Breadth First Search

Question:

What data structure for the
frontier implements this search
strategy?

Input: a graph; a set of start nodes; a function

while is not empty:
 select the oldest path from
 remove from
 if :
 return
 for each neighbour of :
 add to
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩ frontier

Breadth First Search
Breadth-first search always removes one of the shortest paths from the
frontier.

Example:
Frontier:

What happens?

1. Remove ; test for goal

2. Add to end of frontier:

3. New frontier:

4. is selected next

[p1, p2, p3, p4]
successors(p1) = {n1, n2, n3}

p1 p1

{⟨p1, n1⟩, ⟨p1,n2⟩, ⟨p1,n3⟩}

[p2, p3, p4, ⟨p1, n1⟩, ⟨p1,n2⟩, ⟨p1,n3⟩]

p2

Breadth First Search Analysis

For a search graph with maximum branch factor and
maximum path length ...

1. What is the worst-case time complexity?

• [A:] [B:] [C:] [D: it depends]

2. When is breadth-first search complete?

3. What is the worst-case space complexity?

• [A:] [B:] [C:] [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

When to Use
Breadth First Search

• When is breadth-first search appropriate?
• When there might be infinite paths
• When there are likely to be shallow solutions, or
• When we want to guarantee a solution with fewest arcs

• When is breadth-first search inappropriate?
• Large branching factor
• All solutions located deep in the tree
• Memory is restricted

Comparing DFS vs. BFS

• Can we get the space benefits of depth-first search without giving up completeness?

• Run depth-first search to a maximum depth

• then try again with a larger maximum

• until either goal found or graph completely searched

Depth-first Breadth-first

Complete? Only for finite
graphs Complete

Space
complexity O(mb) O(bm)

Time
complexity O(bm) O(bm)

Iterative Deepening Search

Input: a graph; a set of start nodes; a function

for max_depth from 1 to :
 Perform depth-first search to a maximum depth max_depth
end for

goal

∞

Iterative Deepening Search
Input: a graph; a set of start nodes; a function

 for max_depth from 1 to :
 more_nodes := False

 while is not empty:
 select the newest path from
 remove from
 if :
 return
 if k < max_depth:
 for each neighbour of :
 add to frontier
 else if has neighbours:
 more_nodes := True
 end-while

 if more_nodes = False:
 return None

goal

∞

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

nk

Iterative Deepening Search
Analysis

For a search graph with maximum branch factor and
maximum path length ...

1. What is the worst-case time complexity?

• [A:] [B:] [C:] [D: it depends]

2. When is iterative deepening search complete?

3. What is the worst-case space complexity?

• [A:] [B:] [C:] [D: it depends]

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

When to Use
Iterative Deepening Search

• When is iterative deepening search appropriate?

• Memory is limited, and

• Both deep and shallow solutions may exist

• or we prefer shallow ones

• Tree may contain infinite paths

Summary
Different search strategies have different properties and behaviour

• Depth first search is space-efficient but not always complete or time-efficient

• Breadth first search is complete and always finds the shortest path to a goal,
but is not space-efficient

• Iterative deepening search can provide the benefits of both, at the expense
of some time-efficiency

• All three strategies must potentially expand every node, and are not
guaranteed to return an optimal solution

