Calculus Refresher

CMPUT 366: Intelligent Systems

| ogistics

* Assignment #2 due Monday, Feb 28 at 11:59pm
e Submit via eClass
* Next week Is reading week
* No lectures
* No lab
» After reading week (Mon, Feb 28), lectures will be in person

 CCIS L1-160

> W

| ecture Outline

. Recap

Hard-to-Sample Distributions
Gradient-based Optimization

Numerical Issues

Recap:. Bayesian Learning

In Bayesian Learning, we learn a distribution over models instead of a
single model

Model averaging to compute predictive distribution
Prior can encode bias over models (like regularization)

Conjugate models: can compute everything analytically

Recap: Monte Carlo

e Often we cannot directly estimate expectations from our model

 Example: non-conjugate Bayesian models

» Monte Carlo estimates: Use a random sample from the distribution to
estimate expectations by sample averages

1. Use an easier-to-sample proposal distribution instead

* Rejection sampling
* Importance sampling

2. Sample parts of the model sequentially

Forward Sampling in a
Belief Network

e Sometimes we know how to sample parts of a large joint distribution In
terms of other parts

. E.g., belief networks: P(X, Y, Z) = PX)P(Y)P(Z | X, Y)

* We might be able to directly sample from each conditional
distribution but not from the joint distribution

* Forward sampling:
1. Select an ordering of variables consistent with the factoring

2. Repeat until enough samples generated:
For each variable X in the ordering:

Sample x; ~ P(X | pa(X))

Particle riltering

Forward sampling generates a value for each variable, then moves on to the next sample

Particle filtering swaps the order:

 Generate n values for variable X, then n values for variable Y, etc.

» Especially useful when there is no fixed numlber of variables (e.g., in sequential models)

—ach sample is called a particle. Update its weight each time a value is sampled.

Periodically resample from the particles with replacement, resetting weights to 1
* High-probability particles likely to be duplicated

* [ow-probabillity particles likely to be discarded

Resampling means the particles cover the distribution better

Rejection Sampling with
Propositions

 How do we condition on some propositional evidence a”?

N

e Repeat until enough samples accepted €.9., a(x) = (x; > 0 Axy < 12)

1. Sample x from the full joint distribution
(e.g., using forward sampling or particle sampling)

2. If a(x), then accept x
Else reject

 Another view of this procedure:

1. Approximate the full joint distribution

2. Condition on evidence o

| oss Minimization

In supervised learning, we choose a hypothesis to minimize a loss function

Example: Predict the temperature

o Dataset: temperatures y(i) from a random sample of days

* Hypothesis class: Always predict the same value U

e [0SS function:

I &
Lip) = — D 00— py?
=1

Optimization

Optimization: finding a value of x that minimizes f(x)

x* = arg min f(x)

» Temperature example: Find u that makes L(x) small

Gradient descent: lteratively move from current estimate in the direction that
makes f(x) smaller

* For discrete domains, this is just hill climbing:
teratively choose the neighbour that has minimum f(x)

* For continuous domains, neighbourhood is less well-defined

Derivatives

— Ly L' ()
L d
. The derivative f'(x) = — f(x) 1
dx ;
of a function f(x) is the slope of f ,
at point x 1
* When f(x) > 0, fincreases with 0
small enough increases in x -1
-2
« When f(x) < 0, fdecreases

with small enough increases in x h

4

SEEEEEE ST IS A

MVultiple Inputs

Example:
Predict the temperature based on pressure and humidity

o [ataset:
h . o |
(X0, 2<>,y<1>) (xl(m) (m),y(m)) () | 1 <i<m)

» Hypothesis class: Linear regression: h(X; W) = wy + W X; + WX,

e [0SS function:

n

|
— (D) _ (1).
L(w) = - E (h(x W))

=1

Partial Derivatives

Partial derivatives: How much does f(X) change when we only change one
of its inputs Xx;?

e (Can think of this as the derivative of a conditional function

gx) =fx;, ..., Xy oo, X))

2100 = gz
Ox; Ve dx,-gxi'

GGradient

« The gradient of a function f(X) is just a vector that contains all of its
partial derivatives;

—f®)
Vix)=|

°_f(x)

ox,

Gradient Descent

* [he gradient of a function tells how to change every element of a vector to
Increase the function

o |f the partial derivative of X; is positive, iIncrease Xx;

 Gradient descent:
teratively choose new values of x in the (opposite) direction of the gradient:

x1ew — Xold — 7 V f(Xold) |

e This only works for sufficiently small CM

¢ Question: How much should we change x°ld7 learning rate

Where Do Gradients Come From?

Question: How do we compute the gradients we need for gradient descent”

1. Analytic expressions / direct implementation:

R <P
L(u) = ng}@@ mn

1 n — 0 | 2_
= D YO =2y + 4
i=1)

1
VL(u) =— Z —2y(i) + 24

n
=1

Where Do Gradients Come From?

2. Method of differences

VL(x), % L(X + €e;) — L(x)

(for "sufficiently” tiny €)
Question: \WWhy would we ever do this?

Question: \What are the drawbacks?

Where Do Gradients Come From?

3. The Chain Rule (of Calculus)

dx d_y dx
e, h(x) = f(g(x)) = h'(x) = f(g(x))g'(x)

* [f we know formulas for the derivatives of components of a function, then
we can bulld up the derivative of their composition mechanically

dz dz dy

 Most prominent example: Back-propagation in neural networks

Approximating Real Numbers

Computers store real numbers as finite number of bits
Problem: There are an infinite number of real numbers in any interval

Real numbers are encoded as floating point numbers:

+ 1.001...011011 x 21001.0011

significand exponent

* Single precision: 24 bits significand, 8 bits exponent
* Double precision: 53 bits significand, 11 bits exponent

Deep learning typically uses single precision!

1001...0011

U n d e rﬂ OW 1.001...011010 x 27 ewmen

significand

e Positive numbers that are smaller than 1.00...01 x 2-1111..1111 will be rounded
down to zero

* Negative numbers that are bigger than -1.00...01 x 2-1111.. 1117 wil| be
rounded up to zero

 Sometimes that's okay! (Almost every number gets rounded)

e Often it's not (when?)

 Denominators: causes divide-by-zero
* |o0Q: returns -inf

* |og(negative): returns nan

1001...0011

Ove rﬂ OVV 1.001...011010 x 2™ e

significand

Numlbers bigger than 1.111...1111 x 21111 will be rounded up to infinity

Numbers smaller than -1.111...1111 x 21111 will be rounded down to
negative infinity

exp Is used very frequently
* Underflows for very negative inputs
* Qverflows for "large" inputs numbers

89 counts as "large’

1001...0011

Addition/Subtraction "

* Adding a small number to a large number can have no effect (why?)

Example:
>>> A =np.array([O., 1e-8])
>>> A =np.array([0., 1e-8]).astype('float3:")

S O
>>> A&PgmaX() \ \-Qs. \.W.. \.W.. \.Q".
1 1e-8 is not the : ’ ’ ’ ’ ’ ’ ’

L0
L0
L0
L0

>>> (A + 1).argmax() smallest possible 6t
float32
O
>>> A+]1 27~ 59%x1078

array([1., 1.], dtype=float3:)

Softmax

exp(x;)

Z;zl exp(x;)

softmax(X); =

e Softmax is a very common function

* Used to convert a vector of activations (i.e., numbers) into a probability
distribution

« Question: Why not normalize them directly without exp?

« But exp overflows very quickly:

. Solution: softmax(z) where Z = X — max x;
J

| OgQ

Dataset likelihoods shrink exponentially quickly in the number of datapoints

Example:

. Likelihood of a sequence of 5 fair coin tosses = 27> = 1/32

» Likelihood of a sequence of 100 fair coin tosses = 2~100

Solution: Use log-probabilities instead of probabilities

log(pprps---p,) =logp, + ... +logp,
log-prob of 1000 fair coin tosses is 10001og 0.5 ~ — 693

(General Solution

* Question:
What is the most general solution to numerical problems?

- Standard libraries

 [heano, Tensorflow both detect common unstable expressions

e ScCipy, numpy have stable implementations of many common patterns
(e.q., softmax, logsumexp, sigmoid)

Summary

 Gradients are just vectors of partial derivatives

o Gradients point "uphill”

* |Learning rate controls how fast we walk uphili

Deep learning Is fraught with numerical issues:
* Underflow, overflow, magnitude mismatches

 Use standard implementations whenever possible

