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Assignment #3

• Assignment #3 is due Mar 25 (this Friday) at 11:59pm 

• Reminder that TAs are available during office hours 5 days/week to help



Recap: Value Functions
State-value function 

  

Action-value function 

 

vπ(s) ≐ 𝔼π[Gt |St = s]

= 𝔼π [
∞

∑
k=0

γkRt+k+1 St = s]
qπ(s, a) ≐ 𝔼π[Gt |St = s, At = a]

= 𝔼π [
∞

∑
k=0

γkRt+k+1 St = s, At = a]



Recap: Bellman Equations
Value functions satisfy a recursive consistency condition called the Bellman equation: 

  

•  is the unique solution to 's (state-value) Bellman equation 

• There is also a Bellman equation for 's action-value function

vπ(s) ≐ 𝔼π[Gt |St = s]
= 𝔼π[Rt+1 + γGt+1 |St = s]

= ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γ𝔼π[Gt+1 |St+1 = s′ ]]

= ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + γvπ(s′ )]

vπ π

π
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vk+1. There are several di↵erent kinds of expected updates, depending on whether a
state (as here) or a state–action pair is being updated, and depending on the precise way
the estimated values of the successor states are combined. All the updates done in DP
algorithms are called expected updates because they are based on an expectation over all
possible next states rather than on a sample next state. The nature of an update can
be expressed in an equation, as above, or in a backup diagram like those introduced in
Chapter 3. For example, the backup diagram corresponding to the expected update used
in iterative policy evaluation is shown on page 59.

To write a sequential computer program to implement iterative policy evaluation as
given by (4.5) you would have to use two arrays, one for the old values, vk(s), and one
for the new values, vk+1(s). With two arrays, the new values can be computed one by
one from the old values without the old values being changed. Of course it is easier to
use one array and update the values “in place,” that is, with each new value immediately
overwriting the old one. Then, depending on the order in which the states are updated,
sometimes new values are used instead of old ones on the right-hand side of (4.5). This
in-place algorithm also converges to v⇡; in fact, it usually converges faster than the
two-array version, as you might expect, because it uses new data as soon as they are
available. We think of the updates as being done in a sweep through the state space. For
the in-place algorithm, the order in which states have their values updated during the
sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms.

A complete in-place version of iterative policy evaluation is shown in pseudocode in
the box below. Note how it handles termination. Formally, iterative policy evaluation
converges only in the limit, but in practice it must be halted short of this. The pseudocode
tests the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and stops when it is su�ciently
small.

Iterative Policy Evaluation, for estimating V ⇡ v⇡

Input ⇡, the policy to be evaluated
Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
� 0
Loop for each s 2 S:

v  V (s)
V (s) 

P
a
⇡(a|s)

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓

Recap: In-Place Iterative Policy Evaluation

• The updates are in-place: we use new values for  immediately instead 
of waiting for the current sweep to complete (why?) 

• These are expected updates: Based on a weighted average (expectation) 
of all possible next states (instead of what?)

V(s)



Recap: Policy Improvement Theorem

Theorem:  
Let  and  be any pair of deterministic policies. 

If , 

then . 

If you are never worse off at any state by following  for one step and then 
following  forever after, then following  forever has a higher expected value 
at every state.

π π′ 

qπ(s, π′ (s)) ≥ vπ(s) ∀s ∈ 𝒮

vπ′ 
(s) ≥ vπ(s) ∀s ∈ 𝒮

π′ 

π π′ 



Policy Iteration

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0

E�! v⇡0

I�! ⇡1

E�! v⇡1

I�! ⇡2

E�! · · · I�! ⇡⇤
E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v  V (s)
V (s) 

P
s0,r p(s0, r |s, ⇡(s))

⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2
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policy-stable true
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a

P
s0,r p(s0, r |s, a)
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If old-action 6= ⇡(s), then policy-stable false
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This is a lot of iterations!

Is it necessary to run to  
completion?



Value Iteration
Value iteration interleaves the estimation and improvement steps: 

 
vk+1(s) ≐ max

a
𝔼 [Rt+1 + γvk(St+1) |St = s, At = a]

= max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvk(s′ )]

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a

E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v⇤ under
the same conditions that guarantee the existence of v⇤.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v⇡ and v⇤.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v⇤. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating ⇡ ⇡ ⇡⇤

Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S

+, arbitrarily except that V (terminal) = 0

Loop:
| � 0
| Loop for each s 2 S:
| v  V (s)
| V (s) maxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

| � max(�, |v � V (s)|)
until � < ✓

Output a deterministic policy, ⇡ ⇡ ⇡⇤, such that
⇡(s) = argmax

a

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

Value iteration e↵ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di↵erence between



Policy Iteration Summary
• An optimal policy has higher state value than any other policy at every state 

• A policy's state-value function can be computed by iterating an expected 
update based on the Bellman equation 

• Given any policy , we can compute a greedy improvement  by choosing 
highest expected value action based on  

• Policy iteration: Repeat: 
    Greedy improvement using , then recompute  

• Value iteration: Repeat: 
     Recompute  by assuming greedy improvement at every update

π π′ 

vπ

vπ vπ

vπ



Example: Blackjack

• Player gets two cards, dealer gets 1 

• Player can hit (get a new card) as many times as they like, or stick (stop 
hitting) 

• After the player is done, the dealer hits / sticks according to a fixed rule 

• Whoever has the most points (sum of card values) wins 

• But, if you have more than 21 points, you lose immediately ("bust")



Simulating Blackjack

• Given a policy for the player, it is very easy to simulate a game of Blackjack 

• Question: Is it easy to compute the full dynamics? 

• Question: Is it easy to run iterative policy evaluation?



Experience vs. Expectation
• In order to compute expected updates, we need to know the exact 

probability of every possible transition 

• Often we don't have access to the full probability distribution, but we do 
have access to samples of experience 

1. Actual experience: We want to learn based on interactions with a real 
environment, without knowing its dynamics 

2. Simulated experience: We can simulate the dynamics, but we don't 
have an explicit representation of transition probabilities, or there are 
too many states



Monte Carlo Estimation

• Instead of estimating expectations by a weighted sum over 
all possibilities, estimate expectation by averaging over a sample drawn 
from the distribution: 

  𝔼[X] = ∑
x

f(x)x ≈
1
n

n

∑
i=1

xi where xi ∼ f



Monte Carlo Prediction

• Use a large sample of episodes generated by a policy  to estimate the 
state-values  for each state  

• We will consider only episodic tasks for now 

• Question: What is the return  for state  in a given episode? 

• We can estimate the expected return  by averaging 
the returns for that state in every episode containing a visit to 

π
vπ(s) s

Gt St = s

vπ(s) = 𝔼[Gt ∣ St = s]
s



First-visit Monte Carlo Prediction

92 Chapter 5: Monte Carlo Methods

To handle the nonstationarity, we adapt the idea of general policy iteration (GPI)
developed in Chapter 4 for DP. Whereas there we computed value functions from knowledge
of the MDP, here we learn value functions from sample returns with the MDP. The value
functions and corresponding policies still interact to attain optimality in essentially the
same way (GPI). As in the DP chapter, first we consider the prediction problem (the
computation of v⇡ and q⇡ for a fixed arbitrary policy ⇡) then policy improvement, and,
finally, the control problem and its solution by GPI. Each of these ideas taken from DP
is extended to the Monte Carlo case in which only sample experience is available.

5.1 Monte Carlo Prediction

We begin by considering Monte Carlo methods for learning the state-value function for a
given policy. Recall that the value of a state is the expected return—expected cumulative
future discounted reward—starting from that state. An obvious way to estimate it from
experience, then, is simply to average the returns observed after visits to that state. As
more returns are observed, the average should converge to the expected value. This idea
underlies all Monte Carlo methods.

In particular, suppose we wish to estimate v⇡(s), the value of a state s under policy ⇡,
given a set of episodes obtained by following ⇡ and passing through s. Each occurrence
of state s in an episode is called a visit to s. Of course, s may be visited multiple times
in the same episode; let us call the first time it is visited in an episode the first visit
to s. The first-visit MC method estimates v⇡(s) as the average of the returns following
first visits to s, whereas the every-visit MC method averages the returns following all
visits to s. These two Monte Carlo (MC) methods are very similar but have slightly
di↵erent theoretical properties. First-visit MC has been most widely studied, dating back
to the 1940s, and is the one we focus on in this chapter. Every-visit MC extends more
naturally to function approximation and eligibility traces, as discussed in Chapters 9 and
12. First-visit MC is shown in procedural form in the box. Every-visit MC would be the
same except without the check for St having occurred earlier in the episode.

First-visit MC prediction, for estimating V ⇡ v⇡

Input: a policy ⇡ to be evaluated

Initialize:
V (s) 2 R, arbitrarily, for all s 2 S

Returns(s) an empty list, for all s 2 S

Loop forever (for each episode):
Generate an episode following ⇡: S0, A0, R1, S1, A1, R2, . . . , ST�1, AT�1, RT

G 0
Loop for each step of episode, t = T�1, T�2, . . . , 0:

G �G + Rt+1

Unless St appears in S0, S1, . . . , St�1:
Append G to Returns(St)
V (St) average(Returns(St))



Monte Carlo vs. 
Dynamic Programming

• Iterative policy evaluation uses the estimates of the 
next state's value to update the value of this state 

• Only needs to compute a single transition to update 
a state's estimate 

• Monte Carlo estimate of each state's value is 
independent from estimates of other states' values 

• Needs the entire episode to compute an update 

• Can focus on evaluating a subset of states if desired

5.1. Monte Carlo Prediction 95

at the terminal state, as shown to the right. Whereas the DP diagram (page 59)
shows all possible transitions, the Monte Carlo diagram shows only those sampled
on the one episode. Whereas the DP diagram includes only one-step transitions,
the Monte Carlo diagram goes all the way to the end of the episode. These
di↵erences in the diagrams accurately reflect the fundamental di↵erences between
the algorithms.

An important fact about Monte Carlo methods is that the estimates for each
state are independent. The estimate for one state does not build upon the estimate
of any other state, as is the case in DP. In other words, Monte Carlo methods do
not bootstrap as we defined it in the previous chapter.

In particular, note that the computational expense of estimating the value of
a single state is independent of the number of states. This can make Monte Carlo
methods particularly attractive when one requires the value of only one or a subset
of states. One can generate many sample episodes starting from the states of interest,
averaging returns from only these states, ignoring all others. This is a third advantage
Monte Carlo methods can have over DP methods (after the ability to learn from actual
experience and from simulated experience).

A bubble on a wire loop.

From Hersh and Griego (1969). Reproduced with

permission. c�1969 Scientific American, a divi-

sion of Nature America, Inc. All rights reserved.

Example 5.2: Soap Bubble Suppose a wire
frame forming a closed loop is dunked in soapy
water to form a soap surface or bubble conform-
ing at its edges to the wire frame. If the geom-
etry of the wire frame is irregular but known,
how can you compute the shape of the surface?
The shape has the property that the total force
on each point exerted by neighboring points is
zero (or else the shape would change). This
means that the surface’s height at any point is
the average of its heights at points in a small
circle around that point. In addition, the sur-
face must meet at its boundaries with the wire
frame. The usual approach to problems of this
kind is to put a grid over the area covered by
the surface and solve for its height at the grid points by an iterative computation. Grid
points at the boundary are forced to the wire frame, and all others are adjusted toward
the average of the heights of their four nearest neighbors. This process then iterates, much
like DP’s iterative policy evaluation, and ultimately converges to a close approximation
to the desired surface.

This is similar to the kind of problem for which Monte Carlo methods were originally
designed. Instead of the iterative computation described above, imagine standing on the
surface and taking a random walk, stepping randomly from grid point to neighboring
grid point, with equal probability, until you reach the boundary. It turns out that the
expected value of the height at the boundary is a close approximation to the height of
the desired surface at the starting point (in fact, it is exactly the value computed by the
iterative method described above). Thus, one can closely approximate the height of the

3.5. Policies and Value Functions 59

These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v⇡ and q⇡ as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy ⇡ and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (by (3.9))

=
X

a

⇡(a|s)
X

s0

X

r

p(s0, r |s, a)
h
r + �E⇡[Gt+1|St+1 =s0]

i

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, for all s 2 S, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s0, are taken from the set S (or from S

+ in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s0 and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, ⇡(a|s)p(s0, r |s, a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

⇡

s

s0

⇡

rp

a

Backup diagram for v⇡

Equation (3.14) is the Bellman equation for v⇡. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state–action pair. Starting from state s, the root
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy ⇡. From
each of these, the environment could respond with one of several next states, s0 (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

The value function v⇡ is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to



Summary

Monte Carlo estimation estimates values by averaging returns over 
sample episodes 

• Does not require access to full model of dynamics 

• Does require access to an entire episode for each sample


