Optimality &
Simple Heuristic Search

CMPUT 366: Intelligent Systems



| ogistics

* [A office hours begin this week

o See eClass page for times and meeting links

* Assignment #1 released next week



| ecture Outline

1. Logistics
2. Optimality & Least Cost First Search

3. Heuristics



Recap: Uninformed Search

Different search strategies have different properties and behaviour

 Depth first search Is space-efficient but not always complete or time-efficient

* Breadth first search is complete and always finds the shortest path to a goal,
but Is not space-efficient

* |terative deepening search can provide the benefits of both, at the expense
of some time-efticiency

* All three strategies must potentially expand every node



Updated lterative Deepening Search

Input: a graph; a set of start nodes; a goal function

for max_depth from 1 to o0:
more _nodes = False

frontier := {(s) | sis a start node}
while frontier is not empty:

select the newest path (n, ..., n,) from frontier
remove (n,, ..., ;) from frontier
if goal(n,):

return (n, ..., n;)

If K < max_depth:
for each neighbour n of n;:

add (n,, ..., n, n) to frontier

else if n;, has neighbours:

more_nodes = True
end-while
If more_nodes = False:
return None



Optimality

Definition:
An algorithm Is optimal if it Is guaranteed to return an optimal
(.e., minimal-cost) solution first (i.e., before any other solution).

Question: \Which of the three algorithms presented so far is optimal®?
Why*?



| east Cost First Search

* None of the algorithms described so far is guided by arc costs

 BFS and IDS are implicitly guided by path length, which can be the
same for uniform-cost arcs

* [hey return a path to a goal node as soon as they happen to blunder
across one, but it may not be the optimal one

 Least Cost First Search is a search strategy that is guided by arc costs



| east Cost First Search

Input: a graph; a set of start nodes; a goal function

frontier = {(s) | s is a start node}
while frontier is not empty:

.e., cost({ny, ..., 1)) < cost(p)
for all other paths p € frontier

select the cheapest path (n,, ..., n,) from frontier

remove (N, ..., 1) from frontier
if goal(n,):
return (n, ..., n;)
for each neighbour n of n:
add (ny, ..., n,, n) to frontier
end while

Question:

What data structure for the

fron’

ler Implements this search

stra

eqgy’?



| east Cost First Search
Analysis

» |east Cost First Search is complete and optimal if there is € > 0 with
cost({n,n,)) > € for every arc (n;, n,):

1. Suppose (n, ..., n;) is the optimal solution

2. Suppose that p is any non-optimal solution
So, cost(p) > cost({ny, ..., n;))

3. Forevery 0 < <k, cost({ny, ...,ng)) < cost(p)

4. So p will never be removed from the frontier before (n, ..., n;)

 What is the worst-case space complexity of Least Cost First Search”?

[A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

* \When does Least Cost First Search have to expand every node of the graph?



Summary: Search Strategies

Breadth Iterative Least Cost

Depth First First Deepening First
Selection Newest Oldest Newgst, Cheapest
multiple
Data Stack Queue Stack, Priority
structure counter gueue
Finite Complete if
9
Complete® graphs only Complete Complete cost(p) > &
Space - -
complexity Omb) ObT) Omb) ObT)
Time . . -
complexity Oor) Olr) Oor)

Optimal? No No No Optimal



e Dorr

Domain Knowledge

ain-specific knowledge can help speed up search by

iden

1fying promising directions to explore

* \We will encode this knowledge in a function called a
heuristic function which estimates the cost to get from a
node to a goal node

* [he search algorithms In this lecture take account of this
heuristic knowledge when selecting a path from the frontier



Heuristic Function

Definition:

A heuristic function is a function A(n) that returns a non-nega

estimate of the cost of the cheapest path from node n to a goa

e [or paths: h((no, e nk>) = h(ny)

* Uses only readily-available information about a node
(.e., easy to compute)

* Problem-specific

ve

node.



Admissible Heuristic

Definition:
A heuristic function is admissible if 4(n) is always less than or equal to the
cost of the cheapest path from n to any goal node.

» i.e., h(n)is alower bound on cost({n, ..., g)) for any goal node g



=Xample Heuristics

 Euclidean distance for DeliveryBot
(ignores that it can't go through walls)

* Number of dirty rooms for VacuumBot
(ignores the need to move between rooms)

* Points for chess pieces
(ignores positional strength)



Constructing
AdMISSIDIe HeuristiCS

e Search problems try to find a cost-minimizing path, subject to constraints
encoded in the search graph

 How to construct an easier problem? Drop some constraints.
* Thisis called a relaxation of the original problem

* [he cost of the optimal solution to the relaxation will always be an
admissible heuristic for the original problem (Why?)

» Neat trick: If you have two admissible heuristics /; and #,, then
hy(n) = max{h,(n), h,(n)} is admissible too! (Why?)



Simple Uses of Heuristics

* Heuristic depth first search: Add neighbours to the frontier in decreasing order of
thelr heuristic values, then run depth first search as usual

* Will explore most promising successors first, but
e Still explores all paths through a successor before considering other successors
 Not complete, not optimal

 Greedy best first search: Select path from the frontier with the lowest heuristic value

* Not guaranteed to work any better than breadth first search (why?)



Summary

Domain knowledge can help speed up graph search

Domain knowledge can be expressed by a heuristic function,
which estimates the cost of a path to the goal from a node

Admissible heuristics can be bullt from relaxations of the original
problem

Surprisingly, simple uses of heuristics do not guarantee improved
performance

Next time: A* algorithm for provably optimal use of admissible
heuristics



