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Logistics

• TA office hours begin this week 

• See eClass page for times and meeting links 

• Assignment #1 released next week



Lecture Outline

1. Logistics 

2. Optimality & Least Cost First Search 

3. Heuristics



Recap: Uninformed Search

Different search strategies have different properties and behaviour 

• Depth first search is space-efficient but not always complete or time-efficient 

• Breadth first search is complete and always finds the shortest path to a goal, 
but is not space-efficient 

• Iterative deepening search can provide the benefits of both, at the expense 
of some time-efficiency 

• All three strategies must potentially expand every node



Updated Iterative Deepening Search
Input: a graph; a set of start nodes; a  function 

   for max_depth from 1 to : 
        more_nodes := False 

              
        while  is not empty: 
            select the newest path  from  
            remove  from  
            if : 
                return  
            if k < max_depth: 
                for each neighbour  of : 
                    add  to frontier 
            else if  has neighbours: 
                more_nodes := True 
        end-while 

        if more_nodes = False: 
            return None

goal

∞

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

nk



Optimality

Definition: 
An algorithm is optimal if it is guaranteed to return an optimal 
(i.e., minimal-cost) solution first (i.e., before any other solution). 

Question: Which of the three algorithms presented so far is optimal?  
Why?



Least Cost First Search

• None of the algorithms described so far is guided by arc costs 

• BFS and IDS are implicitly guided by path length, which can be the 
same for uniform-cost arcs 

• They return a path to a goal node as soon as they happen to blunder 
across one, but it may not be the optimal one 

• Least Cost First Search is a search strategy that is guided by arc costs 



Least Cost First Search
Input: a graph; a set of start nodes; a goal function 

 
while  is not empty: 
    select the cheapest path  from frontier 
    remove  from  
    if : 
        return  
    for each neighbour  of : 
        add  to frontier 
end while

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

Question: 

What data structure for the 
frontier implements this search 
strategy?

i.e.,  
for all other paths 

cost(⟨n0, …, nk⟩) ≤ cost(p)
p ∈ frontier



Least Cost First Search 
Analysis

• Least Cost First Search is complete and optimal if there is  with 
 for every arc : 

1. Suppose  is the optimal solution 

2. Suppose that  is any non-optimal solution 
So,  

3. For every ,  

4. So  will never be removed from the frontier before  

• What is the worst-case space complexity of Least Cost First Search? 
[A: ]  [B: ]  [C: ]  [D: it depends] 

• When does Least Cost First Search have to expand every node of the graph?

ϵ > 0
cost(⟨n1, n2⟩) > ϵ ⟨n1, n2⟩

⟨n0, …, nk⟩

p
cost(p) > cost(⟨n0, …, nk⟩)

0 ≤ ℓ ≤ k cost(⟨n0, …, nℓ⟩) < cost(p)

p ⟨n0, …, nk⟩

O(m) O(mb) O(bm)



Summary: Search Strategies
Depth First Breadth 

First
Iterative 

Deepening
Least Cost 

First

Selection Newest Oldest Newest, 
multiple Cheapest

Data 
structure Stack Queue Stack, 

counter
Priority 
queue

Complete? Finite 
graphs only Complete Complete Complete if 

cost(p) > 𝜀
Space  

complexity O(mb) O(bm) O(mb) O(bm)

Time 
complexity O(bm) O(bm) O(mbm) ** O(bm)

Optimal? No No No Optimal



Domain Knowledge

• Domain-specific knowledge can help speed up search by 
identifying promising directions to explore  

• We will encode this knowledge in a function called a 
heuristic function which estimates the cost to get from a 
node to a goal node 

• The search algorithms in this lecture take account of this 
heuristic knowledge when selecting a path from the frontier



Heuristic Function
Definition: 
A heuristic function is a function  that returns a non-negative 
estimate of the cost of the cheapest path from node  to a goal node. 

• For paths:  

• Uses only readily-available information about a node 
(i.e., easy to compute) 

• Problem-specific

h(n)
n

h(⟨n0, …, nk⟩) = h(nk)



Admissible Heuristic

Definition: 
A heuristic function is admissible if  is always less than or equal to the 
cost of the cheapest path from  to any goal node. 

• i.e.,  is a lower bound on  for any goal node 

h(n)
n

h(n) cost(⟨n, …, g⟩) g



Example Heuristics

• Euclidean distance for DeliveryBot  
(ignores that it can't go through walls) 

• Number of dirty rooms for VacuumBot 
(ignores the need to move between rooms) 

• Points for chess pieces  
(ignores positional strength)



Constructing 
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to constraints 
encoded in the search graph 

• How to construct an easier problem?  Drop some constraints. 

• This is called a relaxation of the original problem 

• The cost of the optimal solution to the relaxation will always be an 
admissible heuristic for the original problem (Why?) 

• Neat trick: If you have two admissible heuristics  and , then 
 is admissible too!  (Why?) 

h1 h2
h3(n) = max{h1(n), h2(n)}



Simple Uses of Heuristics
• Heuristic depth first search: Add neighbours to the frontier in decreasing order of 

their heuristic values, then run depth first search as usual 

• Will explore most promising successors first, but 

• Still explores all paths through a successor before considering other successors 

• Not complete, not optimal 

• Greedy best first search: Select path from the frontier with the lowest heuristic value 

• Not guaranteed to work any better than breadth first search (why?)



Summary
• Domain knowledge can help speed up graph search 

• Domain knowledge can be expressed by a heuristic function, 
which estimates the cost of a path to the goal from a node 

• Admissible heuristics can be built from relaxations of the original 
problem 

• Surprisingly, simple uses of heuristics do not guarantee improved 
performance 

• Next time: A* algorithm for provably optimal use of admissible 
heuristics


