
Optimality &
Simple Heuristic Search

CMPUT 366: Intelligent Systems

P&M §3.6

Logistics

• TA office hours begin this week

• See eClass page for times and meeting links

• Assignment #1 released next week

Lecture Outline

1. Logistics

2. Optimality & Least Cost First Search

3. Heuristics

Recap: Uninformed Search

Different search strategies have different properties and behaviour

• Depth first search is space-efficient but not always complete or time-efficient

• Breadth first search is complete and always finds the shortest path to a goal,
but is not space-efficient

• Iterative deepening search can provide the benefits of both, at the expense
of some time-efficiency

• All three strategies must potentially expand every node

Updated Iterative Deepening Search
Input: a graph; a set of start nodes; a function

 for max_depth from 1 to :
 more_nodes := False

 while is not empty:
 select the newest path from
 remove from
 if :
 return
 if k < max_depth:
 for each neighbour of :
 add to frontier
 else if has neighbours:
 more_nodes := True
 end-while

 if more_nodes = False:
 return None

goal

∞

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩ frontier
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

nk

Optimality

Definition:
An algorithm is optimal if it is guaranteed to return an optimal
(i.e., minimal-cost) solution first (i.e., before any other solution).

Question: Which of the three algorithms presented so far is optimal?
Why?

Least Cost First Search

• None of the algorithms described so far is guided by arc costs

• BFS and IDS are implicitly guided by path length, which can be the
same for uniform-cost arcs

• They return a path to a goal node as soon as they happen to blunder
across one, but it may not be the optimal one

• Least Cost First Search is a search strategy that is guided by arc costs

Least Cost First Search
Input: a graph; a set of start nodes; a goal function

while is not empty:
 select the cheapest path from frontier
 remove from
 if :
 return
 for each neighbour of :
 add to frontier
end while

frontier := {⟨s⟩ ∣ s is a start node}
frontier

⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

Question:

What data structure for the
frontier implements this search
strategy?

i.e.,  
for all other paths

cost(⟨n0, …, nk⟩) ≤ cost(p)
p ∈ frontier

Least Cost First Search
Analysis

• Least Cost First Search is complete and optimal if there is with
 for every arc :

1. Suppose is the optimal solution

2. Suppose that is any non-optimal solution
So,

3. For every ,

4. So will never be removed from the frontier before

• What is the worst-case space complexity of Least Cost First Search?
[A:] [B:] [C:] [D: it depends]

• When does Least Cost First Search have to expand every node of the graph?

ϵ > 0
cost(⟨n1, n2⟩) > ϵ ⟨n1, n2⟩

⟨n0, …, nk⟩

p
cost(p) > cost(⟨n0, …, nk⟩)

0 ≤ ℓ ≤ k cost(⟨n0, …, nℓ⟩) < cost(p)

p ⟨n0, …, nk⟩

O(m) O(mb) O(bm)

Summary: Search Strategies
Depth First Breadth

First
Iterative

Deepening
Least Cost

First

Selection Newest Oldest Newest,
multiple Cheapest

Data
structure Stack Queue Stack,

counter
Priority
queue

Complete? Finite
graphs only Complete Complete Complete if

cost(p) > 𝜀
Space

complexity O(mb) O(bm) O(mb) O(bm)

Time
complexity O(bm) O(bm) O(mbm) ** O(bm)

Optimal? No No No Optimal

Domain Knowledge

• Domain-specific knowledge can help speed up search by
identifying promising directions to explore

• We will encode this knowledge in a function called a
heuristic function which estimates the cost to get from a
node to a goal node

• The search algorithms in this lecture take account of this
heuristic knowledge when selecting a path from the frontier

Heuristic Function
Definition:
A heuristic function is a function that returns a non-negative
estimate of the cost of the cheapest path from node to a goal node.

• For paths:

• Uses only readily-available information about a node
(i.e., easy to compute)

• Problem-specific

h(n)
n

h(⟨n0, …, nk⟩) = h(nk)

Admissible Heuristic

Definition:
A heuristic function is admissible if is always less than or equal to the
cost of the cheapest path from to any goal node.

• i.e., is a lower bound on for any goal node

h(n)
n

h(n) cost(⟨n, …, g⟩) g

Example Heuristics

• Euclidean distance for DeliveryBot
(ignores that it can't go through walls)

• Number of dirty rooms for VacuumBot
(ignores the need to move between rooms)

• Points for chess pieces
(ignores positional strength)

Constructing
Admissible Heuristics

• Search problems try to find a cost-minimizing path, subject to constraints
encoded in the search graph

• How to construct an easier problem? Drop some constraints.

• This is called a relaxation of the original problem

• The cost of the optimal solution to the relaxation will always be an
admissible heuristic for the original problem (Why?)

• Neat trick: If you have two admissible heuristics and , then
 is admissible too! (Why?)

h1 h2
h3(n) = max{h1(n), h2(n)}

Simple Uses of Heuristics
• Heuristic depth first search: Add neighbours to the frontier in decreasing order of

their heuristic values, then run depth first search as usual

• Will explore most promising successors first, but

• Still explores all paths through a successor before considering other successors

• Not complete, not optimal

• Greedy best first search: Select path from the frontier with the lowest heuristic value

• Not guaranteed to work any better than breadth first search (why?)

Summary
• Domain knowledge can help speed up graph search

• Domain knowledge can be expressed by a heuristic function,
which estimates the cost of a path to the goal from a node

• Admissible heuristics can be built from relaxations of the original
problem

• Surprisingly, simple uses of heuristics do not guarantee improved
performance

• Next time: A* algorithm for provably optimal use of admissible
heuristics

