Monte Carlo Estimation

CMPUT 366: Intelligent Systems

P&M §8.6

Logistics

- Assignment #2 due Monday, Feb 28 at 11:59pm
 - Submit via eClass
- Next week is **reading week**
 - No lectures
 - No lab
- After reading week (Mon, Feb 28), lectures will be in person
 - CCIS L1-160

Recap: Bayesian Learning

- single model
- analytically
 - **Today:** non-conjugate models!
- predictive distribution

In Bayesian Learning, we learn a distribution over models instead of a

• When the model is **conjugate**, posterior probabilities can be computed

We can make predictions by model averaging to compute the posterior

Lecture Outline

- 1. Recap & Logistics
- 2. Prior Distributions as Bias
- 3. Estimation via Sampling
- 4. Sampling from Hard-to-Sample Distributions

Prior Distributions as Bias

- Suppose I'm comparing two models, $heta_1$ and $heta_2$ such that
 - $Pr(D \mid \theta_1) = Pr(D \mid \theta_2)$
- Question: Which model has higher posterior probability $Pr(\theta_i \mid D)$?
- Priors are a way of encoding bias: they tell use which models to prefer when the data doesn't

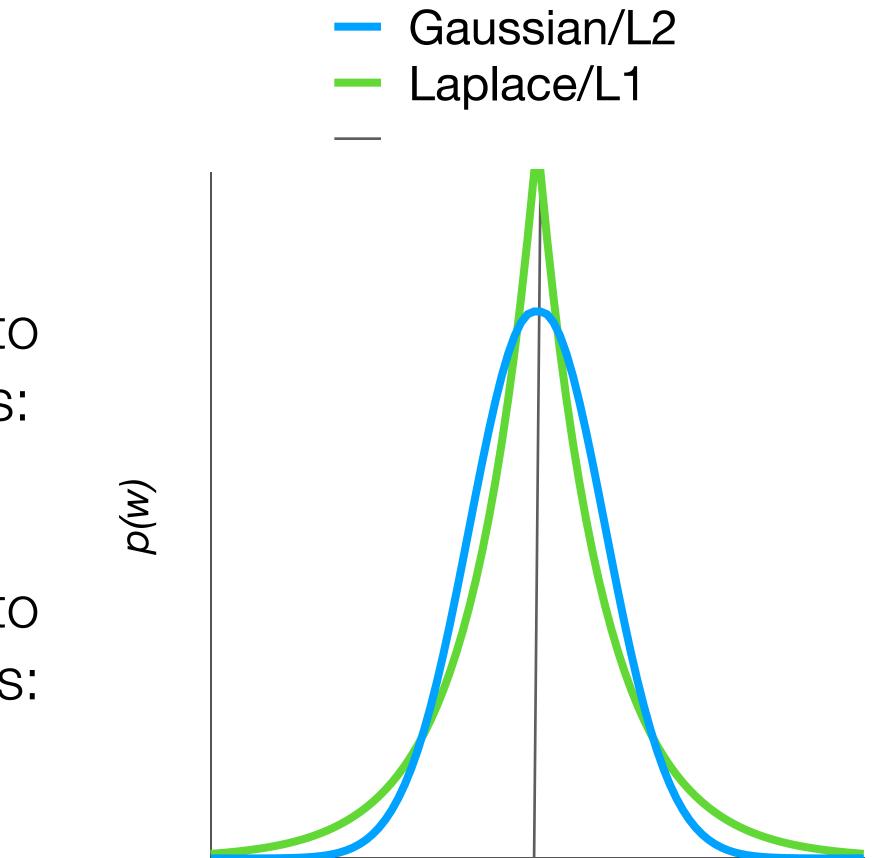
Priors for Pseudocounts

- Recall that when $p(\theta) = \text{Beta}(a, b)$, posterior probability is $p(\theta \mid n_1, n_0) = \text{Beta}(a + n_1, b + n_0)$
- We can straightforwardly encode **pseudocounts** as prior information in Beta-Binomial and Dirichlet-Multinomial models
- E.g., for pseudocounts k_1 and k_0 ,

 $p(\theta) = \text{Beta}(1 + k_1, 1 + k_0)$

- Some **regularizers** can be encoded as priors also
- L2 regularization is equivalent to a Gaussian prior on the weights: $p(w) = \mathcal{N}(w \mid m, s)$
- L1 regularization is equivalent to a Laplacian prior on the weights: $p(w) = \exp(|w|)/2$

Priors for Regularization



- random variable X
- - variable Y = h(X)
- **Question:** But first, why would we want to?

Estimation via Sampling

Suppose that we are able to generate independent random samples from a

• How can we use those random samples to estimate the expected value of X?

• or some function h of X; but that in general is just a different random

Estimation from a Sample

Law of Large Numbers:

value of X.

$$\mathbb{E}[X] = \sum_{x} f(x)x \approx \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Since Y = h(X) is also a random variable, this generalizes to arbitrary functions of X:

$$\mathbb{E}[h(X)] = \sum_{x} f(x)h(x) \approx \frac{1}{n} \sum_{i=1}^{n} h(x_i)$$

As the number n of independent samples x_1, x_2, \ldots, x_n from a random variable X with distribution f(x) approaches infinity, the sample average approaches the expected

Probabilities from a Sample

- **Question:** How can we use a sample to estimate the **probability** of a \bullet proposition α ?
- Probability of a proposition is just the expectation of its **indicator function**:

• So estimate that expectation as with any other function:

$$\Pr(\alpha) = \mathbb{E}\left(I_{\alpha}[X]\right) = \sum_{x} f(x)I_{\alpha}[x] \approx \frac{1}{n} \sum_{x} I_{\alpha}[x].$$

 $I_{\alpha}[x] = \begin{cases} 1 & \text{if } \alpha(x), \\ 0 & \text{otherwise.} \end{cases}$

Probably Approximately Correct

- We never actually have an infinite number of sampled values
- How do we know when we have **enough** samples?

Hoeffding's inequality:

Suppose $0 \le X \le 1$, and s is the sample Then

$\Pr(|\mathbb{E}[X] -$

- For any given error margin
 e and number of samples n, we can plug into this formula
 and get a PAC bound.
 - Can also go the other way: plug in the acceptable error bound to RHS, and derive the **number of samples** *n* needed
- This generalizes to arbitrary **bounded** random variables $a \leq X \leq b$.

Suppose $0 \le X \le 1$, and s is the sample average from n independent samples from X.

$$|s| > \epsilon \leq 2e^{-2n\epsilon^2}$$

Generating Samples from a Single Variable

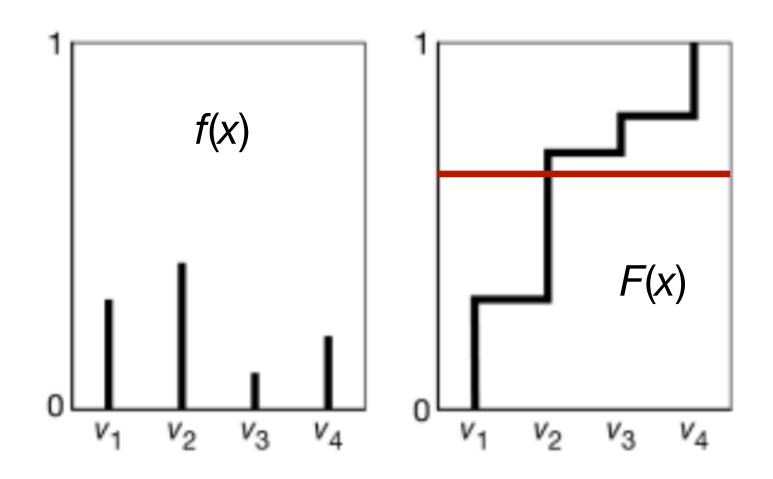
How can we generate samples from a distribution?

- 1. Totally order the domain of the variable (can be arbitrary for categorical variables)
- 2. Cumulative distribution: $F(x) = Pr(X \le x)$

$$F(x) = \int_{-\infty}^{x} f(z)dz \qquad F(x) =$$

- 3. Select a uniform random number $y \in [0,1]$
- 4. Return $x_i = F^{-1}(y)$

- $= \sum f(x')$ $x' \leq x$



Hard-To-Sample Distributions

especially large joint distributions

Question: Why might a distribution be hard to sample from?

- Use samples from easier distributions:
 - Rejection Sampling
 - Importance Sampling
- Go piece by piece through the joint distribution 2.
 - Forward Sampling in a Belief Network
 - Particle Filtering

- Often, we want to sample from distributions that are hard to sample from,

- Can we use an easy-to-sample distribution g(x) to help us sample from f(x)?
 - Very common: We know an **unnormalized** $f^*(x)$, but not the properly normalized distribution f(x):

$$f(x) = \frac{f^*(x)}{\int_{-\infty}^{\infty} f^*(z) dz}$$

- f(x) is the target distribution
 - $f^*(x)$ is the unnormalized target distribution
- g(x) is the proposal distribution

Proposal Distributions

Rejection Sampling

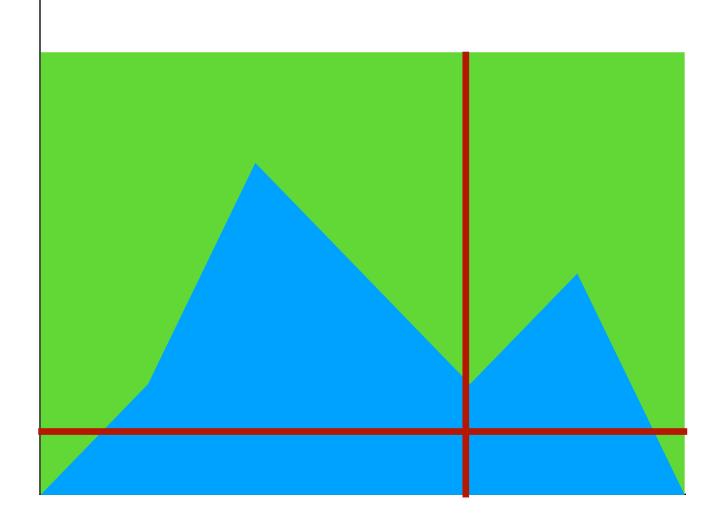
- Rejection sampling is one way to use a proposal distribution to sample from a target distribution
- Assumption: We know a constant M such that

 $\forall x : Mf^*(x) \le g(x)$

- Much easier to find M than to find the constant that \bullet makes the integral come out to exactly 1
- **Repeat** until "enough" samples accepted:
 - **Sample** $x \sim g(x)$ from the **proposal distribution**
 - 2. Sample $u \sim \text{Uniform}[0,1]$

3. If $u \leq \left| Mf^*(x) \middle/ g(x) \right|$, accept *x* (add it to samples) Else reject

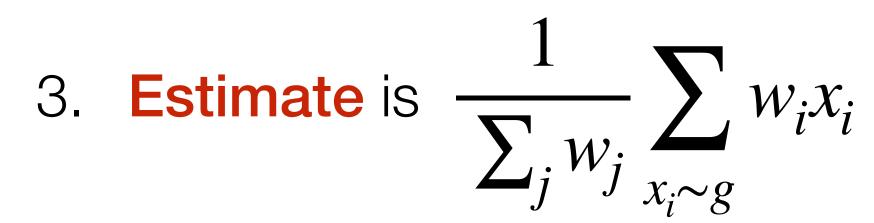
 $Mf^{*}(x)$



X

Importance Sampling

- Rejection sampling works, but it can be **wasteful**
 - Lots of samples get rejected when proposal \bullet and target distributions are very different
- What if we took a **weighted average** instead?
 - 1. Sample x_1, x_2, \ldots, x_n from g(x)
 - 2. Weight each sample x_i by



$$w_i = \frac{Mf^*(x_i)}{g(x_i)}$$

$$\mathbb{E}[X] = \sum_{x} f(x)x$$
$$= \sum_{x} \frac{g(x)}{g(x)} f(x)x$$
$$= \sum_{x} g(x) \frac{f(x)}{g(x)} x$$
$$\approx \frac{1}{n} \sum_{x_i \sim g} \frac{f(x_i)}{g(x_i)} x_i$$

Forward Sampling in a Belief Network

- terms of other parts
 - E.g., belief networks: $P(X, Y, Z) = P(X)P(Y)P(Z \mid X, Y)$
 - We might be able to directly sample from each conditional distribution but not from the joint distribution
- Forward sampling:
 - **Select** an ordering of variables consistent with the factoring
 - 2. **Repeat** until enough samples generated: **For** each variable X in the ordering: Sample $x_i \sim P(X \mid pa(X))$

• Sometimes we know how to sample parts of a large joint distribution in

Particle Filtering

- **Forward sampling** generates a value for each variable, then moves on to the next sample
- **Particle filtering** swaps the order:
 - Generate n values for variable X, then n values for variable Y, etc. lacksquare
 - Especially useful when there is no fixed number of variables (e.g., in sequential models)
- Each sample is called a particle. Update its weight each time a value is sampled.
- Periodically resample from the particles with replacement, resetting weights to 1
 - High-probability particles likely to be **duplicated**
 - Low-probability particles likely to be **discarded**
- Resampling means the particles cover the distribution better

Rejection Sampling with Propositions

- How do we condition on some propositional evidence α ?
- Repeat until enough samples accepted
 - **Sample** *x* from the **full joint distribution** (e.g., using **forward sampling** or **particle sampling**)
 - 2. If $\alpha(x)$, then accept x Else reject
- Another view of this procedure:
 - **Approximate** the full joint distribution
 - 2. Condition on evidence α

e.g., $\alpha(x) = (x_1 > 0 \land x_4 \le 12)$

Summary

- Often we cannot directly estimate probabilities or expectations from our model
- Monte Carlo estimates: Use a random sample from the distribution to estimate expectations by sample averages
- Two families of techniques for hard to sample distributions:
 - 1. Use an easier-to-sample proposal distribution instead
 - 2. Sample parts of the model sequentially