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Logistics
• Assignment #2 due Monday, Feb 28 at 11:59pm 

• Submit via eClass 

• Next week is reading week 

• No lectures 

• No lab 

• After reading week (Mon, Feb 28), lectures will be in person 

• CCIS L1-160



Recap: Bayesian Learning

• In Bayesian Learning, we learn a distribution over models instead of a 
single model 

• When the model is conjugate, posterior probabilities can be computed 
analytically 

• Today: non-conjugate models! 

• We can make predictions by model averaging to compute the posterior 
predictive distribution



Lecture Outline

1. Recap & Logistics 

2. Prior Distributions as Bias 

3. Estimation via Sampling 

4. Sampling from Hard-to-Sample Distributions



Prior Distributions as Bias

• Suppose I'm comparing two models,  and  such that 

 

• Question: Which model has higher posterior probability ?  

• Priors are a way of encoding bias: they tell use which models to prefer 
when the data doesn't

θ1 θ2

Pr(D ∣ θ1) = Pr(D ∣ θ2)

Pr(θi ∣ D)



Priors for Pseudocounts

• Recall that when , posterior probability is 

  

• We can straightforwardly encode pseudocounts as prior information in 
Beta-Binomial and Dirichlet-Multinomial models 

• E.g., for pseudocounts  and , 

 

p(θ) = Beta(a, b)

p(θ ∣ n1, n0) = Beta(a + n1, b + n0)

k1 k0

p(θ) = Beta(1 + k1,1 + k0)



Priors for Regularization

• Some regularizers can be 
encoded as priors also 

• L2 regularization is equivalent to 
a Gaussian prior on the weights: 

 

• L1 regularization is equivalent to 
a Laplacian prior on the weights: 

p(w) = 𝒩(w ∣ m, s)

p(w) = exp( |w | )/2

p(
w
)

w

Gaussian/L2
Laplace/L1



Estimation via Sampling

• Suppose that we are able to generate independent random samples from a 
random variable  

• How can we use those random samples to estimate the expected value of ? 

• or some function  of ; but that in general is just a different random 
variable  

• Question: But first, why would we want to?

X

X

h X
Y = h(X)



Estimation from a Sample
Law of Large Numbers: 
As the number  of independent samples  from a random variable  with 
distribution  approaches infinity, the sample average approaches the expected 
value of . 

  

Since  is also a random variable, this generalizes to arbitrary functions of : 

 

n x1, x2, …, xn X
f(x)

X

𝔼[X] = ∑
x

f(x)x ≈
1
n

n

∑
i=1

xi

Y = h(X) X

𝔼[h(X)] = ∑
x

f(x)h(x) ≈
1
n

n

∑
i=1

h(xi)



Probabilities from a Sample
• Question: How can we use a sample to estimate the probability of a 

proposition ? 

• Probability of a proposition is just the expectation of its indicator function: 

  

• So estimate that expectation as with any other function: 

.

α

Iα[x] = {1 if α(x),
0 otherwise.

Pr(α) = 𝔼 (Iα[X]) = ∑
x

f(x)Iα[x] ≈
1
n ∑

x

Iα[x]



Probably Approximately Correct
• We never actually have an infinite number of sampled values 

• How do we know when we have enough samples? 

Hoeffding's inequality: 
Suppose , and  is the sample average from  independent samples from .  
Then 

. 

• For any given error margin  and number of samples , we can plug into this formula 
and get a PAC bound. 

• Can also go the other way: plug in the acceptable error bound to RHS, and derive 
the number of samples  needed 

• This generalizes to arbitrary bounded random variables .

0 ≤ X ≤ 1 s n X

Pr( |𝔼[X] − s | > ϵ) ≤ 2e−2nϵ2

ϵ n

n

a ≤ X ≤ b



Generating Samples from a  
Single Variable

How can we generate samples from a distribution? 

1. Totally order the domain of the variable 
(can be arbitrary for categorical variables) 

2. Cumulative distribution:  

  

3. Select a uniform random number  

4. Return 

F(x) = Pr(X ≤ x)

F(x) = ∫
x

−∞
f(z)dz F(x) = ∑

x′ ≤x

f(x′ )

y ∈ [0,1]

xi = F−1(y)

F(x)

f(x)



Hard-To-Sample Distributions
Often, we want to sample from distributions that are hard to sample from, 
especially large joint distributions 

Question: Why might a distribution be hard to sample from? 

1. Use samples from easier distributions: 

• Rejection Sampling 

• Importance Sampling 

2. Go piece by piece through the joint distribution 

• Forward Sampling in a Belief Network 

• Particle Filtering



Proposal Distributions
• Can we use an easy-to-sample distribution  to help us sample from ? 

• Very common: We know an unnormalized , but not the properly 
normalized distribution : 

  

•  is the target distribution 

•  is the unnormalized target distribution 

•  is the proposal distribution

g(x) f(x)

f*(x)
f(x)

f(x) =
f*(x)

∫ ∞
−∞

f*(z)dz

f(x)

f*(x)

g(x)



Rejection Sampling
• Rejection sampling is one way to use a proposal 

distribution to sample from a target distribution 

• Assumption: We know a constant  such that  

  

• Much easier to find  than to find the constant that 
makes the integral come out to exactly 1 

• Repeat until "enough" samples accepted: 

1. Sample  from the proposal distribution 

2. Sample   

3. If , accept  (add it to samples) 

Else reject

M

∀x : Mf*(x) ≤ g(x)

M

x ∼ g(x)

u ∼ Uniform[0,1]

u ≤ [Mf*(x) / g(x)] x

u

x

Mf*(x) g(x)



Importance Sampling
• Rejection sampling works, but it can be wasteful 

• Lots of samples get rejected when proposal 
and target distributions are very different 

• What if we took a weighted average instead? 

1. Sample  from  

2. Weight each sample  by  

3. Estimate is  

x1, x2, …, xn g(x)

xi wi =
Mf*(xi)

g(xi)
1

∑j wj ∑
xi∼g

wixi

𝔼[X] = ∑
x

f(x)x

= ∑
x

g(x)
g(x)

f(x)x

= ∑
x

g(x)
f(x)
g(x)

x

≈
1
n ∑

xi∼g

f(xi)
g(xi)

xi



Forward Sampling in a 
Belief Network

• Sometimes we know how to sample parts of a large joint distribution in 
terms of other parts 

• E.g., belief networks:  

• We might be able to directly sample from each conditional 
distribution but not from the joint distribution 

• Forward sampling: 

1. Select an ordering of variables consistent with the factoring 

2. Repeat until enough samples generated: 
    For each variable  in the ordering: 
        Sample 

P(X, Y, Z) = P(X)P(Y)P(Z ∣ X, Y)

X
xi ∼ P(X ∣ pa(X))



Particle Filtering
• Forward sampling generates a value for each variable, then moves on to the next sample 

• Particle filtering swaps the order: 

• Generate  values for variable , then  values for variable , etc. 

• Especially useful when there is no fixed number of variables (e.g., in sequential models) 

• Each sample is called a particle.  Update its weight each time a value is sampled. 

• Periodically resample from the particles with replacement, resetting weights to 1 

• High-probability particles likely to be duplicated 

• Low-probability particles likely to be discarded 

• Resampling means the particles cover the distribution better

n X n Y



Rejection Sampling with 
Propositions

• How do we condition on some propositional evidence 𝛼? 

• Repeat until enough samples accepted 

1. Sample  from the full joint distribution  
(e.g., using forward sampling or particle sampling) 

2. If , then accept  
Else reject 

• Another view of this procedure: 

1. Approximate the full joint distribution 

2. Condition on evidence 

x

α(x) x

α

e.g., α(x) = (x1 > 0 ∧ x4 ≤ 12)



Summary

• Often we cannot directly estimate probabilities or expectations from our model 

• Monte Carlo estimates: Use a random sample from the distribution to estimate 
expectations by sample averages 

• Two families of techniques for hard to sample distributions: 

1. Use an easier-to-sample proposal distribution instead 

2. Sample parts of the model sequentially


