[Training Neural Networks

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap & Logistics

2. Gradient Descent for Neural Networks
3. Automatic Ditferentiation

4, Back-Propagation

Assignment #2

e Assignment #2 was due on Monday

» [ate submission deadline TODAY at 11:59pm

e Submit via eClass

Recap: Nonlinear Features
y =fX;W) = g(W'x)=¢ (Z Wixl)

Generalized linear model: Activation function g of linear combination of inputs
Extension: Learn a generalized linear model on richer inputs

1. Define a feature mapping ¢(x) that returns functions of the original inputs

2. Learn a linear model of the features instead of the inputs

y =f(x; W) = g(W (X)) = g (Z Wi[¢(x)]i>
i=1

Recap:
Feedforward Neural Network

* A neural network is many units yx;w,b) =g (b(y '+ Z wh(x;; w, bw))
composed together i=1

e Feedforward neural network:
Units arranged into layers

e Each layer takes outputs of
previous layer as its inputs

Recap: Chain Rule of Calculus

dz dz dy

dx B d_ydx
e,

h(x) = f(gx)) = h'(x) =f(g(x))g'(x)

f we know formulas for the derivatives of components of a function, then we
can build up the derivative of their composition mechanically

Recap: [raining Neural Networks

« Specify a loss L and a set of training examples:

L = (X(l)a y(l))a I (X(n)a y(n))
Loss function
* [raining by gradient descent: / (€.g., squared error)

1. Compute loss on training data: L(W, b) = Z A f(x(’) W.b), y(l))

Prediction Target

2. Compute gradient of loss: VL(W,Db)

3. Update parameters to make loss smaller:

new old
[VJ@«?W] _ [\g)ld] — 5 VL(WO, pold)

1hree Representations

A function f(x, y) can be represented in multiple ways:

1. As a formula:

Ax,y) = (xy + sinx + 4)(3y2 +6) 3. As a finite numerical algorithm

S| =X

2. As a computational graph: =Y
$3 =81 X $y
s, = sin(s;)
Ss = 83+ Sy
Se = 85 + 4
s7 = sar(s,)
Sg = 3 X 85
Sg = Sg + 0

SlO — S6XS9

example from [Blcker et al., 2006]

Symbolic Differentiation

z2=f() ﬁ _ 0z dy Ox
y = f(x) z = f(f(f(w))) ow Ay ox ow
x = f(w) = (W) (f(w))f (w)

fw) = {w ifw>0

0 otherwise.

 We can differentiate a nested formula by recursively applying the chain rule
to derive a new formula for the gradient

* Problem: This can result in a lot of repeated subexpressions

* Question: \What happens if the nested function is defined piecewise?

Automatic Differentiation:
Forward Moae

* [he forward mode converts a finite numerical algorithm for computing a function into an
augmented finite numerical algorithm for computing the function's derivative

* [or each step, a new step Is constructed representing the derivative of the corresponding
step in the original program:

S| =X sp=1

5= s, =0

§3 =815 : S5 =81+ 8,

S4 = 51 X5 Sy = 51 X 85+ 857 X 8,

0s

n

8S1

. To compute the partial derivative . sets; = 1 and s, = 0 and run augmented algorithm

* This takes roughly twice as long to run as the original algorithm (why?)

of
Let's compute —
0y

57

Forward Mode Example

using forward mode:

x=2,y=38

Question: What is the
oroblem with this approach
for neural networks”?

S| =X
=)
S3 =81 X8
sy = sin(s;)
55 = 53 T 34
Se = 55+ 4
7 = sqr(s,)
Sg = 3 X §7
Sg = Sg + 6

S10 = S6 X S9

=2

= 3
=16

~ 0.034
= 16.034
= 20.034
= 64

= 192

= 198

= 3966.732

s; =0

/]

S2—1

S5 =81 X 8§+ 85 X85 =2
s, = cos(sy) X5, =0
S§=S§+S’=2

)
S6—S5—2

$7 =8, X2Xs,=16
Sg = 3 X 57 =438

Sg = Sg = 438

Sig =S

6 X 8o + 8¢ X 8g = 1357.632

Forward Mode Performance

o0 compute the full gradient of a function of m inputs requires computing
m partial derivatives

In forward mode, this requires m forward passes
For our toy examples, that means running the forward pass twice
Neural networks can easily have thousands of parameters

We don't want to run the network thousands of times for each gradient
update!

Automatic Ditferentiation:
Backward Mode

 Forward mode sweeps through the graph:

0s.
. For each s;, computes s/ = — for each s,
651
e [The numerator varies, and the denominator is fixed

« Backward mode does the opposite:

oS

. For each s;, computes the local gradient 5; = —
ﬁSi

e [he numerator is fixed, and the denominator varies

0s

n

0X;

l

. Atthe end, we have computed X; = for each input x;

0s,
0s 1

Backward Mode ExXample

Let's compute —f
0Xx
Sl — X
S2 — y
>4 S, =85 XS
4 3 1 2
s © . \C L
S s = sins)
OanO8 210 Ss = 83 + 5,
y 3
%2 o s7 = Sqr(s,)
) o] — 3
S9 — S8 6

x=2,y=38

=2

= 3

=16

~ 0.034

= 16.034
= 20.034

= 64

= 192

= 198

= 3966.732

using backward mode:

___ Osy9 i
510 = EY
510

oS 0Sn OS
a—”) = 200 — 55, = 20.034
Sg 8510 aSg

0s;g 01 08y

>
|

9

Sg = = = 591 = 20.034
0S8 aSg aSS
0s 0S1(OS
5 =—0 =—1 "% — 53 =60.102
05 0sSg 6S7a
S
S = —= |= 5o = 198
aS6

Backward Mode Example (2)

Let's compute — and — using backward mode:
0x 0y
X=2,y=8 x=2,y=38
08y
S1 =X =2 S6:_=S9:198
os
Sy =Y — & P P P 6
\) \) \)
S3 =81 X 8, =16 57z=_19_ 10970 _ =1 _ 198
y - > 9 Js, 0 °
~ s, = sin(s;) ~ 0.034 85 56 055
35 >10 S5 — S3 —+ S4 — 16034 — aSlO _ aslo aSS _ —1 _ 198
50 it vl e S
S = 55+ 4 = 20.034 0s, 0S5 0y
G S7 — Sqr(s2) — 64 — aSIO - 0S10 aSS g
o 5= — = —— =51 = 198
sg = 3 X 87 = 192 ds; 0S5 \0S;
59 = 93 6 = 198 S, = % = P10 055 + P10 057 = 525 + 5,25, ~ 1357.632
: 055 0sz_0S, _0s7 05, L
S10 = S6 X S9 = 3966.732 0519 _ 0819 083 |0S19 05y

=
|

- = + =S_352+S_4COSS1 ~ 1781.9
8S1 aS3 6S1 aS4 8S1

BacK-Propagation

LW.b) =) £ (fx?; W,b),y?)

Back-propagation is simply automatic differentiation in backward mode, used to
compute the gradient VW,bL of the loss function with respect to its parameters W, b:

1. At each layer, compute the local gradients of the layer's computations

2. These local gradients will be used as inputs to the next layer's local gradient
computations

3. At the end, we have a partial derivative for each of the parameters, which we can
use to take a gradient step

Summary

* [he loss function of a deep feedforward networks is simply a very nested
function of the parameters of the model

 Automatic differentiation can compute these gradients more efficiently
than symbolic differentiation or finite-differences numeric computations

o Symbolic differentiation is interleaved with numeric computation
* |n forward mode, m sweeps are required for a function of m parameters
* |In backward mode, only a single sweep is required

 Back-propagation is simply automatic differentiation applied to neural
networks in backward mode

