CMPUT 366: Intelligent Systems

Causality

Bar §3.4

Lecture Outline

- 1. Recap & Logistics
- 2. Causality Introduction
- 3. Causal Queries

Assignment #1

- Assignment #1 is due tonight (Feb 4) at 11:59pm
- Submit via eclass: zipfile containing:
 - All code (yours and provided utility code)
 - PDF of problem set solutions

Recap: Independence in a Belief Network

Belief Network Semantics:

Every node is independent of its non-descendants, conditional only on its parents

Patterns of dependence:

3.

- 2.
 - descendant

Chain: Ends are **not marginally** independent, but **conditionally** independent given middle

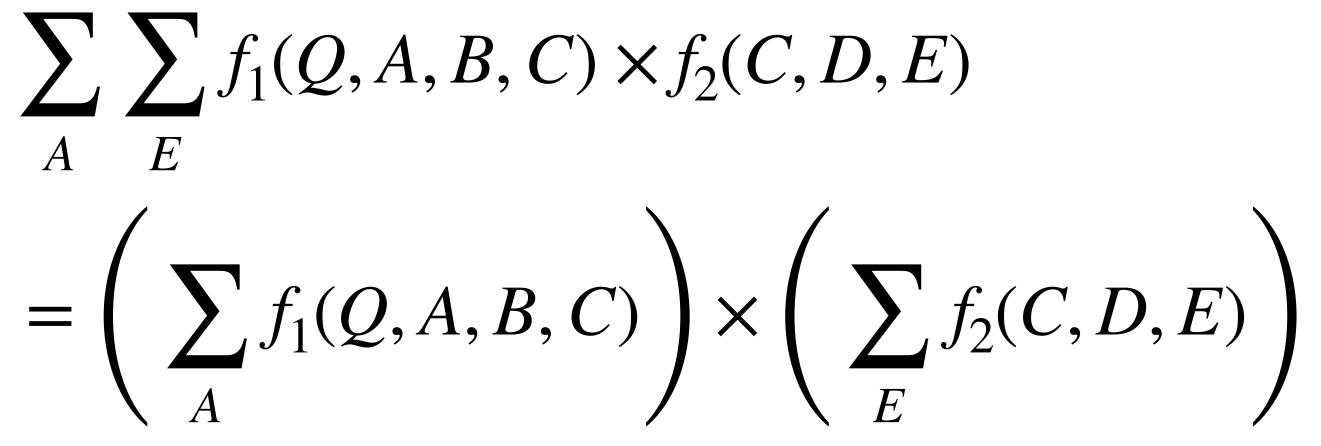
Common ancestor: Descendants are **not marginally** independent, but **conditionally** independent given ancestor

Common descendant: Ancestors are marginally independent, but **not conditionally** independent given

Recap: Variable Elimination

- Condition on observations by conditioning
- Construct joint distribution factor by multiplication
- 4. Normalize at the end

Interleaving order of sums and products can improve efficiency:

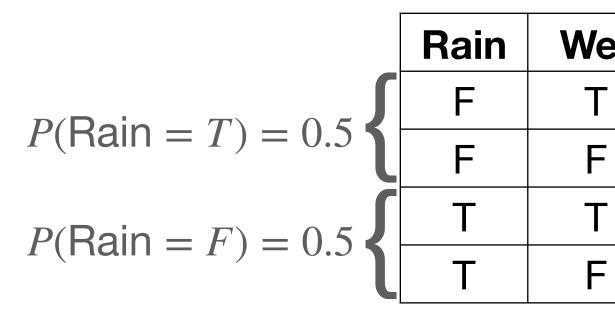


Remove non-query, non-observed variables by summing out

112 computations

28 computations

Causality Introduction: A Tale of Two Belief Networks



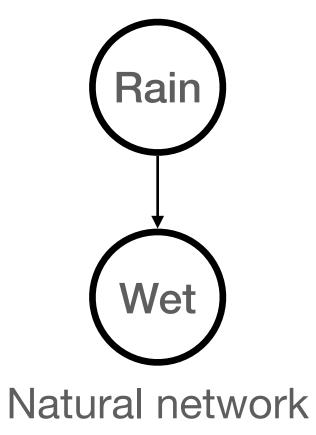
 Two different ways to factor the joint distribution between whether the sidewalk is **Wet** and whether it is **Raining**:

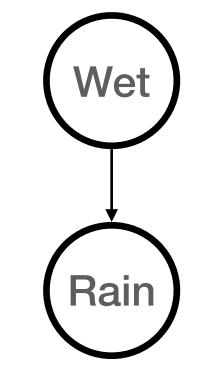
$$P(\text{Rain, Wet}) = P(\text{Wet} \mid$$

- $= P(\text{Rain} \mid \text{Wet})P(\text{Wet})$
- Each factorization corresponds to a different Belief Network

Vet	P(Rain, Wet)			
Т	0.125			
F	0.375			
Т	0.45			
F	0.05			

Rain)P(Rain)



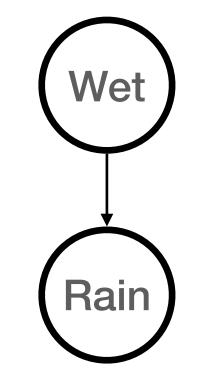


Inverted network

The Inverted Network Isn't Crazy

Corresponds to the factoring $P(Rain \mid Wet)P(Wet)$

- Sometimes you want to answer the question it is currently Raining?
 - observations (**Wet** sidewalk)
- computations with **Bayes' Rule**



Inverted network

Given that I observe that the sidewalk is Wet, what is the probability that

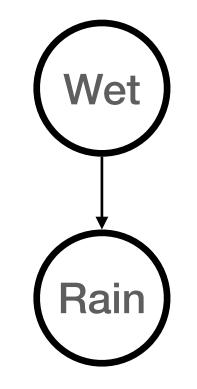
• This is just updating our confidence in a hypothesis (it is **Raining**) given our

• Could preprocess the natural network into this form to avoid having to do a lot of

The Inverted Network Is Crazy

Corresponds to the factoring $P(Rain \mid Wet)P(Wet)$

- probability that it is **Raining**?
 - So, condition on Wet=true
 - This network seems to imply that it will be $P(Rain \mid Wet = True) = .78 > P(Rain) = .5$
 - wait, what?
- **Question:** What is going wrong in this example?

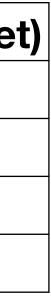


Inverted network

• If I cause my sidewalk to be Wet (by throwing water on it), what is the

Wet	P(Wet)	
Т	0.575	
F	0.425	

Rain	Wet	P(Rain We
F	F F 0.88	
Т	F	0.12
F	Т	0.22
Т	T	0.78



Observations vs. Interventions

- The semantics of Belief Networks are defined for observational questions
 - They don't directly model causal questions
 - In fact, in our Rainy Sidewalk example, we would get exactly the same (crazy) answer to our causal question from querying the natural network
- The joint distribution represented by the networks doesn't model the situation in which I intervene
 - Adding a variable James_Throws_Water to the distribution

Simpson's Paradox

G	D	R	count	P(G,D,R)
M	Т	Т	18	0.225
Μ	Т	F	12	0.15
M	F	Т	7	0.0875
Μ	F	F	3	0.0375
F	Т	Т	2	0.025
F	Т	F	8	0.1
F	F	Т	9	0.1125
F	F	F	21	0.2625

G - gender

D - received drug

R - recovered

- Suppose we have information from two trials of a new drug: One on male test subjects, and one on female test subjects.
 - Is the drug **effective for males**? $P(R \mid D = true, G = male) = 0.60$ $P(R \mid D = false, G = male) = 0.70$
 - Is the drug **effective for females**? $P(R \mid D = true, G = female) = 0.20$ $P(R \mid D = false, G = female) = 0.30$
 - Is the drug **effective**?

$$P(R \mid D = true) = 0.50$$
$$P(R \mid D = false) = 0.40$$

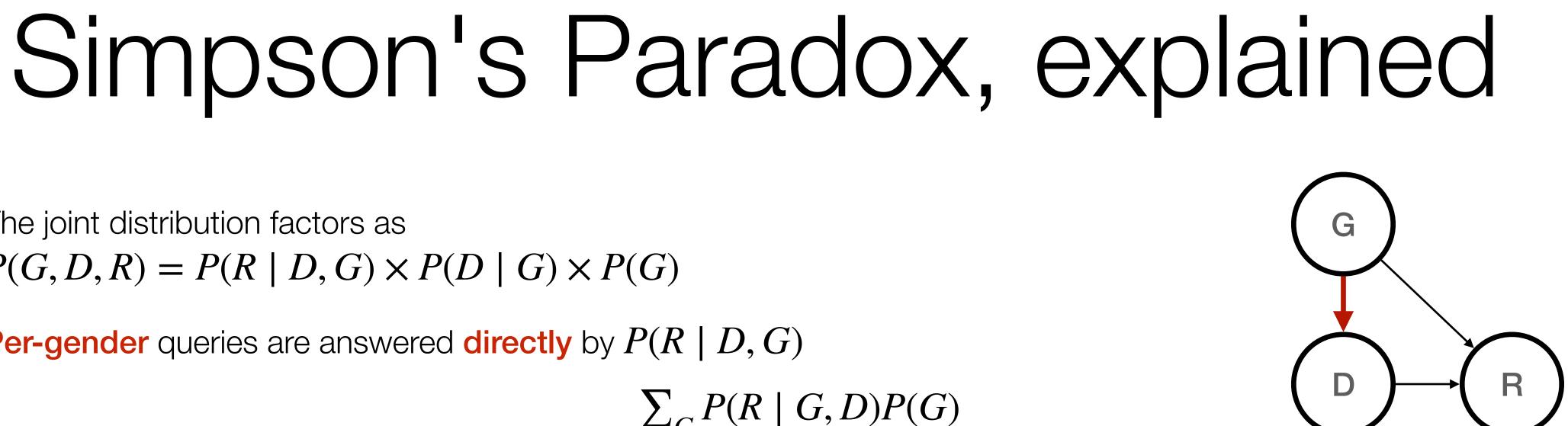
- The joint distribution factors as $P(G, D, R) = P(R \mid D, G) \times P(D \mid G) \times P(G)$
- **Per-gender** queries are answered **directly** by $P(R \mid D, G)$

• For the **overall query**, we want $P(R \mid D) = \frac{\sum_{G} P(R \mid G, D) P(G)}{\sum_{G,R} P(R \mid G, D) P(G)}$

But that's not how the distribution factors. If we follow the factoring above, we will instead compute \bullet

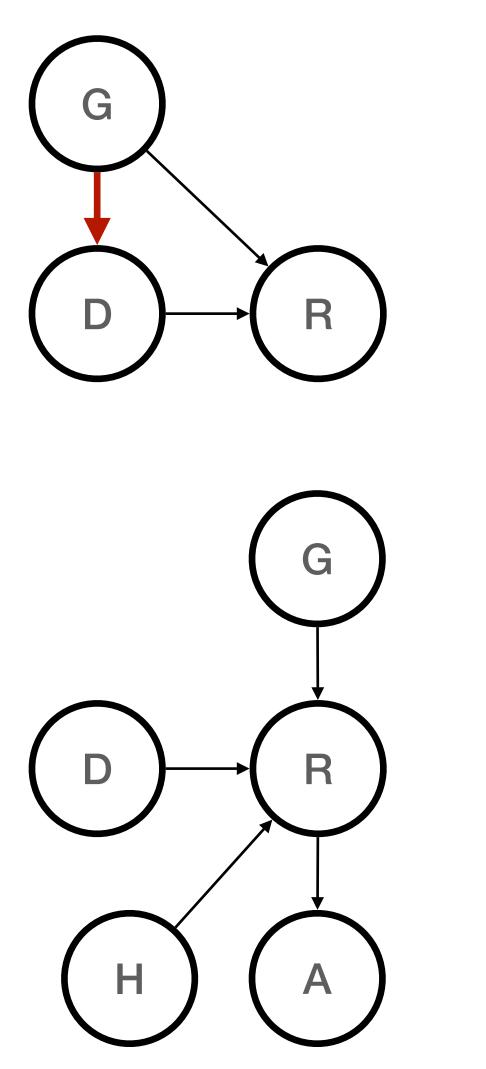
$$P(R \mid D) = \frac{P(R, D)}{P(D)} = \frac{\sum_{G, R} P(G, D, R)}{\sum_{G, R} P(G, D, R)} = \frac{\sum_{G, R} P(R \mid D, G) P(D \mid G) P(G)}{\sum_{G, R} P(R \mid D, G) P(D \mid G) P(G)}$$

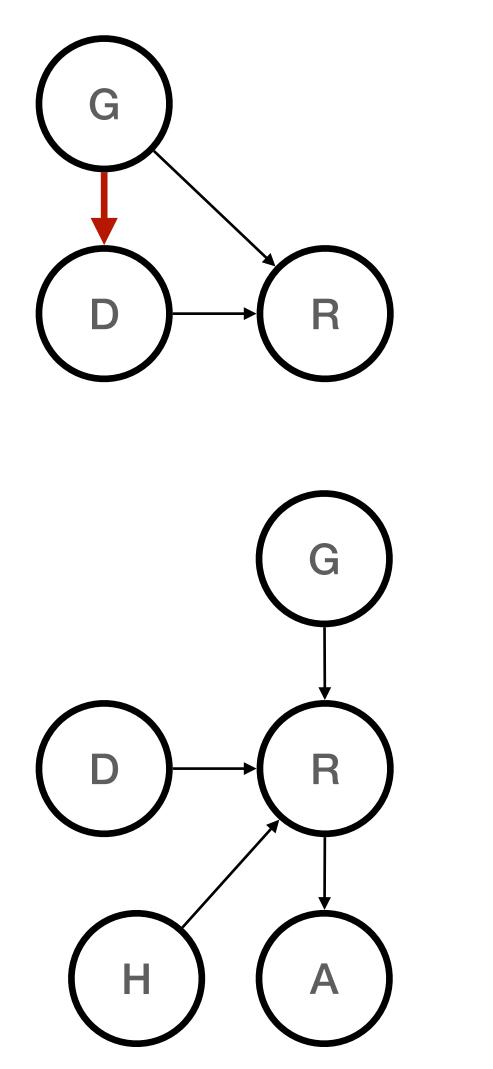
- In our dataset, knowing whether a subject got the drug tells you something lacksquareabout their **gender**, and males have a **higher overall recovery** rate than females
- $P(R \mid G = male) = 0.625$ vs $P(R \mid G = female) = 0.275$



Selection Bias

- This problem is an example of **selection bias** ullet
- Whether subjects received treatment is **systematically related** to \bullet their **response** to the treatment
- This is why **randomized trials** are the gold standard for causal \bullet questions:
 - The only thing that determines whether or not a subject is treated is a **random number**
 - Random number is definitely independent of anything else (including **response** to treatment)





Post-Intervention Distribution

- have forced D = true
 - that D = true
 - and the **post-intervention** distribution
- queries using existing techniques (e.g., variable elimination)

• The causal query is really a query on a **different distribution** in which we

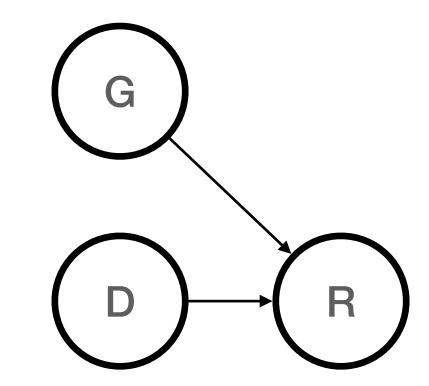
Different from the original joint distribution conditioned on observing

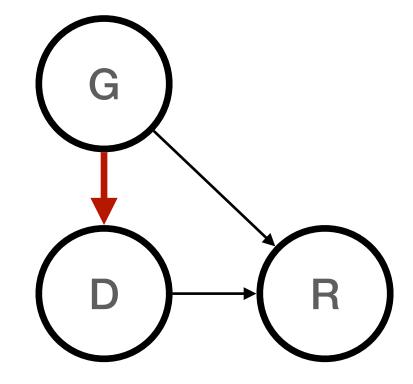
We will refer to the two distributions as the observational distribution

• With a post-intervention distribution, we can compute the answers to causal

Post-Intervention Distribution for Simpson's Paradox

- Observational distribution: $P(G, D, R) = P(R \mid D, G) \times P(D \mid G) \times P(G)$
- Question: What is the post-intervention distribution for Simpson's Paradox?
 - for all $g \in dom(G)$
 - That's the same as just omitting the $P(D \mid G)$ factor
- **Post-intervention distribution:** $P(G, D, R) = P(R \mid D, G) \times P(G)$





The Do-Calculus

- How should we express causal queries?
- One approach: The **do-calculus**
- Condition on **observations**: $P(Y \mid X = x)$
- Express interventions with special do operator: $P(Y \mid do(X = x))$
- Allows us to **mix** observational and interventional information: $P(Y \mid Z = z, do(X = x))$

Evaluating Causal Queries With the Do-Calculus

- Given a query $P(Y \mid do(X = x), Z = z)$:
 - X's direct parents to X
 - intervention distribution

1. Construct post-intervention distribution \hat{P} by removing all links from

2. Evaluate the observational query $\hat{P}(Y \mid X = x, Z = z)$ in the post-

Example: Simpson's Paradox

- **Observational distribution:** $P(G, D, R) = P(R \mid D, G) \times P(D \mid G) \times P(G)$ \bullet
- **Observational query:**

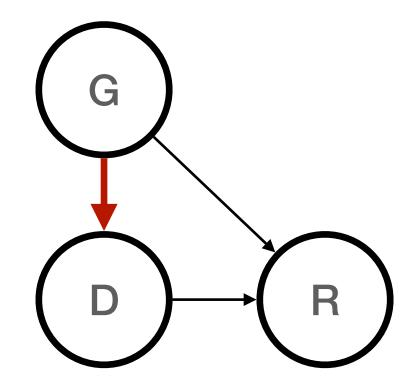
$$P(R \mid D) = \frac{P(R, D)}{P(D)} = \frac{\sum_{G, R} P(G, D)}{\sum_{G, R} P(G, D)}$$

- **Post-intervention distribution** for causal query $P(R \mid do(D = true))$: $\hat{P}(G, D, R) = P(R \mid D, G) \times P(G)$
- Causal query:

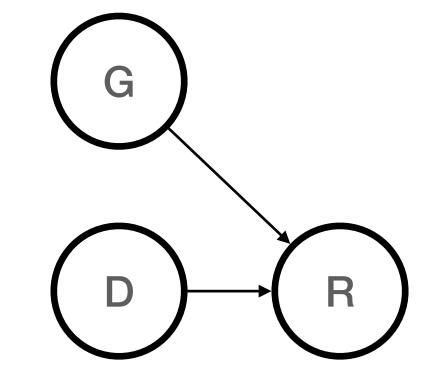
$$P(R \mid do(D = true)) = \hat{P}(R \mid D = true) = \frac{\sum_{G} P(R \mid D, G) P(G)}{\sum_{G, R} P(R \mid D, G) P(G)}$$

Causal query values: \bullet $P(R \mid do(D = true)) = 0.40 \quad P(R)$

 $\frac{G}{G,D,R} = \frac{\sum_{G} P(R \mid D, G) P(D \mid G) P(G)}{\sum_{G,R} P(R \mid D, G) P(D \mid G) P(G)}$ • Observational query values: $P(R \mid D = true) = 0.50$ $P(R \mid D = false) = 0.40$



$$| do(D = false) \big) = 0.50$$



Example: Rainy Sidewalk

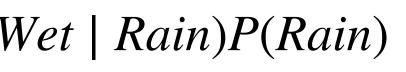
Query: $P(Rain \mid do(Wet = true))$

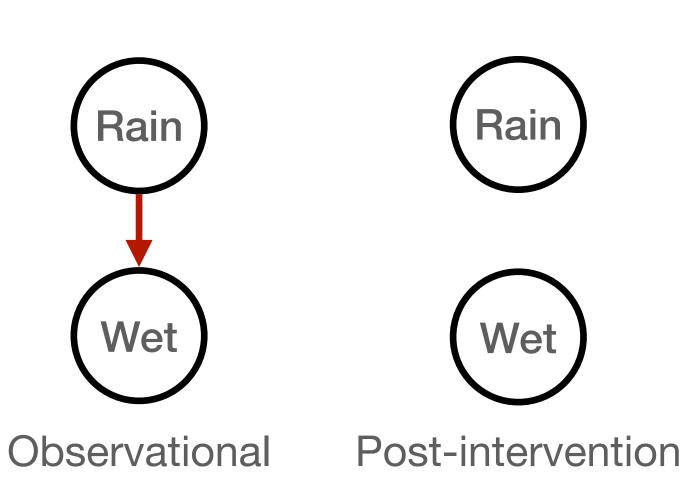
Natural network:

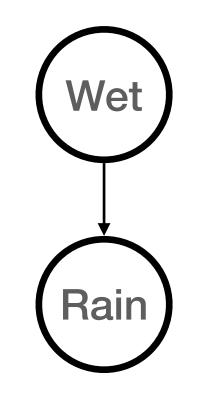
- Observational distribution: P(Wet, Rain) = P(Wet | Rain)P(Rain)
- Post intervention distribution: $\hat{P}(Wet = true, Rain) = P(Rain)P(Wet)$
- $P(Rain \mid do(Wet = true)) = .50$

Inverted network:

- Observational distribution: $P(Wet, Rain) = P(Rain \mid Wet)P(Rain)$
- Post intervention distribution: \bullet $\hat{P}(Wet = true, Rain) = P(Rain \mid Wet)P(Wet)$
- $P(Rain \mid do(Wet = true)) = .78$







Wet Rain

Post-intervention

Causal Models

- The natural network gives the correct answer to our causal query, but the **inverted network** does not (Why?)
- Not every factoring of a joint distribution is a valid causal model

Definition:

before the value of random variable Y.

A causal model is a directed acyclic graph of random variables such that for every edge $X \to Y$, the value of random variable X is realized

Alternative Representation: Influence Diagrams

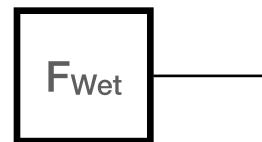
Instead of adding a new operator, we can instead represent causal queries by **augmenting** the causal model with **decision** variables F_D for each potential intervention target D.

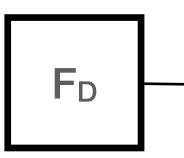
 $dom(F_D) = dom(D) \cup \{idle\}$

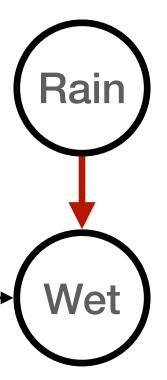
 $P(D \mid parents(D), F_D) = \begin{cases} P(D \mid D) \\ 1 \\ 0 \end{cases}$

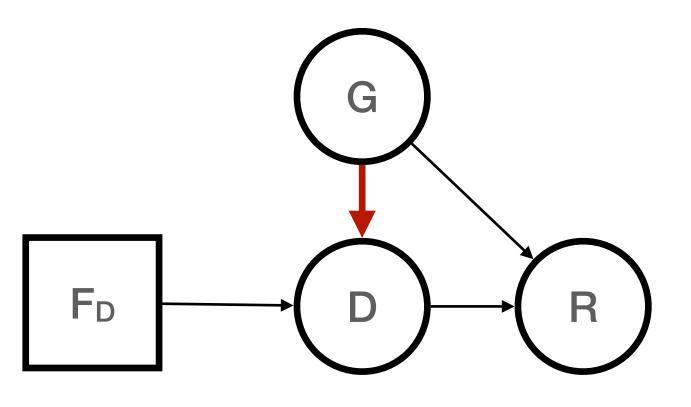
 $\begin{array}{ll} P(D \mid parents(D)) & \text{if } F_D = idle, \\ 1 & \text{if } F_D \neq idle \land D = F_D, \\ 0 & \text{otherwise.} \end{array}$

Influence Diagrams Examples









Summary

- Observational queries $P(Y \mid X = x)$ are different from causal queries $P(Y \mid do(X = x))$
- To evaluate causal query $P(Y \mid do(X = x))$:
 - 1. Construct post-intervention distribution \hat{P} by removing all links from X's direct parents to X
 - 2. Evaluate the observational query $\hat{P}(Y \mid X = x, Z = z)$ in the post-intervention distribution
- Not every correct Bayesian network is a valid causal model