Heuristic Search & A*

CMPUT 366: Intelligent Systems

P&M §3.6

Lecture Outline

- 1. Recap
- 2. A* Search
- 3. Comparing Heuristics

Definition:

of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:

cost of the cheapest path from *n* to a goal node.

• i.e., h(n) is a lower bound on $cost(\langle n, ..., g \rangle)$ for any goal node g

Recap: Heuristics

A heuristic function is a function h(n) that returns a non-negative estimate

A heuristic function is **admissible** if h(n) is always less than or equal to the

A* Search

- A* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let $f(p) = \operatorname{cost}(p) + h(p)$
 - f(p) estimates the total cost to the nearest goal node starting from p
- A* removes paths from the frontier with smallest f(p)
- When *h* is admissible, $p^* = \langle s, ..., n, ..., g \rangle$ is a solution, and $p = \langle s, ..., n \rangle$ is a prefix of p^* :
 - $f(p) \leq \operatorname{cost}(p^*)$ (why?)

Input: a graph; a set of start nodes; a goal function

frontier := $\{\langle s \rangle \mid s \text{ is a start node}\}$ while *frontier* is not empty: select f-minimizing path $\langle n_0, \ldots, n_k \rangle$ from frontier **remove** $\langle n_0, ..., n_k \rangle$ from *frontier* if $goal(n_k)$: return $\langle n_0, \ldots, n_k \rangle$ for each neighbour n of n_k : add $\langle n_0, \ldots, n_k, n \rangle$ to frontier end while

A* Search Algorithm

Question:

What data structure for the frontier implements this search strategy?

- Heuristic: Euclidean distance
- **Question:** What is $f(\langle o103, b3 \rangle)$? f((o103,o109))?
- A* will spend a bit of time exploring paths in lacksquarethe labs before trying to go around via o109
- At that point the heuristic starts helping more
- **Question:** Does breadth-first search explore paths in the lab too?
- **Question:** Does breadth-first search explore any paths that A* does not?

A* Theorem

Theorem:

If there is a solution of finite cost, A^{*} using heuristic function h always returns an **optimal** solution (in **finite time**), if

- 1. The branching factor is **finite**, and
- 2. All arc costs are greater than some $\epsilon > 0$, and
- 3. *h* is an **admissible** heuristic.

Proof:

- No suboptimal solution will be removed from the frontier whenever the frontier contains a prefix of the optimal solution
- 2. The optimal solution is guaranteed to be removed from the frontier eventually

A* Theorem Proofs: A Lexicon

An admissible heuristic: h(n) $f(\langle n_0, \dots, n_k \rangle) = \operatorname{cost}(\langle n_0, \dots, n_k \rangle) + h(n_k)$ A start node: S A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A prefix of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

A* Theorem: Optimality

Proof part 1: Optimality (no g is removed before p^*)

- 1. f(g) = cost(g) and $f(p^*) = cost(p^*)$
 - (i) $f(\langle n_0, ..., n_k \rangle) = cost(\langle n_0, ..., n_k \rangle) + h(n_k)$, and h(z) = 0

2. f(p') < f(g)

- (i) $f(\langle s, ..., a \rangle) = \operatorname{cost}(\langle s, ..., a \rangle) + h(a)$
- (iii) $h(a) \leq \operatorname{cost}(\langle a, b, \dots, z \rangle)$
- (iv) $f(p') \le f(p^*) < f(g)$

An admissible heuristic: h(n) $f(\langle n_0, \dots, n_k \rangle) = \operatorname{cost}(\langle n_0, \dots, n_k \rangle) + h(n_k)$ A start node: s A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A **prefix** of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

(ii) $f(\langle s, ..., a, b, ..., z \rangle) = cost(\langle s, ..., a, b, ..., z \rangle) + h(z) = cost(\langle s, ..., a \rangle) + cost(a, b, ..., z \rangle)$

A* Theorem: Completeness

Proof part 2: A* is **complete**

- Every path that is removed from the frontier is only replaced by more-costly paths lacksquare(why?)
- Since individual arc costs are larger than ϵ , every path in the frontier will eventually have cost larger than k, for any finite k

k Every path with at least — arcs will have cost larger than k

- ϵ
- So every path in the frontier will eventually have cost larger than the cost of the optimal solution
- So the optimal solution will eventually be removed from the frontier
- Question: Why are we talking about costs and not f-values?

An admissible heuristic: h(n) $f(\langle n_0, \dots, n_k \rangle) = \operatorname{cost}(\langle n_0, \dots, n_k \rangle) + h(n_k)$ A start node: s A goal node: z (i.e., goal(z) = 1) The optimal solution: $p^* = \langle s, ..., a, b, ..., z \rangle$ A **prefix** of the optimal solution: $p' = \langle s, ..., a \rangle$ A suboptimal solution: $g = \langle s, q, ..., z \rangle$

Comparing Heuristics

- Suppose that we have two **admissible** heuristics, h_1 and h_2
- Suppose that for every node n, $h_2(n) \ge h_1(n)$

Question: Which heuristic is better for search?

Dominating Heuristics

Definition:

A heuristic h_2 dominates a heuristic h_1 if

1. $\forall n : h_2(n) \ge h_1(n)$, and

2.
$$\exists n : h_2(n) > h_1(n)$$
.

Theorem:

If h_2 dominates h_1 , and both heuristics are admissible, then A^{*} using h_2 will never remove more paths from the frontier than A^{*} using h_1 .

• i.e., better heuristics remove weakly fewer paths

Question:

Which admissible heuristic dominates all other admissible heuristics?

A* Analysis

For a search graph with *finite* maximum branch factor b and *finite* maximum path length *m...*

- 1. What is the worst-case **space complexity** of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]
- 2. What is the worst-case time complexity of A*? [A: O(m)] [B: O(mb)] [C: $O(b^m)$] [D: it depends]

Question: If A* has the same space and time complexity as least cost first search, then what is its advantage?

A* Summary

- Domain knowledge can help speed up graph search
- Domain knowledge can be expressed by a heuristic function, which estimates the cost of a path to the goal from a node
- A* considers both path cost and heuristic cost when selecting paths: f(p) = cost(p) + h(p)
- Admissible heuristics guarantee that A* will be optimal
- Admissible heuristics can be built from relaxations of the original problem
- The more accurate the heuristic is, the fewer the paths A* will explore