Heuristic Search & A*

CMPUT 366: Intelligent Systems

| ecture Outline

1. Recap
2. A* Search

3. Comparing Heuristics

Recap: Heuristics

Definition:

A heuristic function is a function A(n) that returns a non-negative estimate
of the cost of the cheapest path from n to a goal node.

* e.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if 4(n) is always less than or equal to the
cost of the cheapest path from n to a goal node.

» i.e., h(n)is alower bound on cost({n, ..., g)) for any goal node g

A* Search

A* search uses both path cost information and heuristic information to
select paths from the frontier

Let f(p) = cost(p) + h(p)
» f(p) estimates the total cost to the nearest goal node starting from p
A* removes paths from the frontier with smallest f(p)

When £ is admissible,

=(s,...,n,...,2)is asolution, and actual estimateci

start > 1
p ={(s,...,n)is a prefix of p*: : § o .

oal

cost(p) h(n)

» J(p) < cost(p™) (why?) ~ .

A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier :== {(s) | sis a start node} e, f((ng, ... m)) < f(p)
_ . for all other paths p € frontier
while frontier is not eM
select f-minimizing path (n,, ..., n,) from frontier
remove (7, ..., 1) from frontier
if goal(ny):
return (n, ..., 1;) Question:
for each neighbour n of n;:

add (ny, ..., n,, n) to frontier
end while

What data structure for the
frontier iImplements this search

strategy”?

A* Search Example:

e Heuristic: Euclidean distance

» Question: What is f({0103,b3))?
f({0103,0109))?

DeliveryBo

[

 A*will spend a bit of time exploring paths in
the labs before trying to go around via 0109

e At that point the heuristic starts helping

more

 Question: Does breadth-first search
explore paths in the lab too?

* Question: Does breadth-first search
explore any paths that A* does not?

(rl23)
A O
4
4 9
(0125)= (0123)= (ol19)
6 4 A 11
6 A 8
6
INED >(c3 Ko
34 16
6
bl) p(b2
15D D,
4 3
b3) ! >
17 A 18
A 7
("mail)< (5103) 12 »(0109)
26 23 21 24

A™ | heorem

Theorem:

If there is a solution of finite cost, A* using heuristic function A always returns an
optimal solution (in finite time), If

1. The branching factor is finite, and

2. All arc costs are greater than some € > (), and

3. his an admissible heuristic.
Proof:

1. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

2. The optimal solution is guaranteed to be removed from the frontier eventually

A™ | heorem Proofs: A Lexicon

An admissible heuristic: i(n)

fny, ...,n)) = cost({ny, ..., n)) + h(n,)
A start node: s

A goal node: z (i.e., goal(z) = 1)

The optimal solution: p* = (s, ...,a, b, ...2)
A prefix of the optimal solution: p’ = (s, ..., a)

A suboptimal solution: g = (s, g, ..., 2)

A™ | heorem:
Optimality

Proof part 1: Optimality (no g is removed before p*)

1. flg) = cost(g) and f(p*) = cost(p*)

i) f(ng, ...,n)) = cost({ny, ..., n)) + h(n,), and h(z) = 0

2. f(p") <f(8)
i f({(s,...,a)) =cost((s,...,a)) + h(a)

An admissible heuristic: /i(n)

f((ng, ..., n)) = cost({ny, ..., n)) + h(n,)
A start node: s

A goal node: 7 (i.e., goal(z) = 1)

The optimal solution: p* = (s, ...,a, b, ...27)
A prefix of the optimal solution: p’ = (s, ..., a)
A suboptimal solution: g = (s,q, ..., 2)

i f(s,...,a,b,...,7)) =cost(s,...,a,b,...,z)) + h(z) = cost({s, ...,a)) + cost(a, b, ..., 7))

i) h(a) < cost({a,b, ...,7))
(iv) f(p) < f(p*) <J(g) N

*] An admissible heuristic: /1(n)
A Th eo re m . f((ng, ..., ny)) = cost({ny, ..., n;)) + h(n,)
A start node: s

COm pleteﬂess A goal node: 7 (i.e., goal(z) = 1)

The optimal solution: p* = (s, ...,a, b, ...27)
A prefix of the optimal solution: p’ = (s, ..., a)

Proof part 2: A* is complete A suboptimal solution: g = (s,q, ..., 2)

* Every path that is removed from the frontier is only replaced by more-costly paths
(why?)

e Since individual arc costs are larger than €, every path in the frontier will eventually

have cost larger than k, for any finite k

k

. Every path with at least — arcs will have cost larger than k
€

e S0 every path in the frontier will eventually have cost larger than the cost of the
optimal solution

* SO0 the optimal solution will eventually be removed from the frontier

* Question: Why are we talking about costs and not f-values?

Comparing Heuristics

» Suppose that we have two admissible heuristics, i, and h,

» Suppose that for every node n, h,(n) > h;(n)

Question: \Which heuristic is better for search?

Dominating Heuristics

Definition:
A heuristic h, dominates a heuristic A, if

1. Vn: hy(n) > h{(n), and
2. dn: h,(n) > hy(n).

Theorem:
If i, dominates A, and both heuristics are admissible, then A* using A, will

never remove more paths from the frontier than A* using A;.

* |.e., better heuristics remove weakly fewer paths

Question:
Which admissible heuristic dominates all other admissible heuristics?

A" AnalysIs

For a search graph with finite maximum branch factor b and
finite maximum path length m...

1. What is the worst-case space complexity of A*?

[A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

2. What is the worst-case time complexity of A*?

[A: O(m)] [B: O(mb)] [C: O(b™)] [D: it depends]

Question: [f A* has the same space and time complexity as
least cost first search, then what is its advantage?

A* Summary

 Domain knowledge can help speed up graph search

 Domain knowledge can be expressed by a heuristic function, which
estimates the cost of a path to the goal from a node

* A* considers both path cost and heuristic cost when selecting paths:

Jf(p) = cost(p) + h(p)

 Admissible heuristics guarantee that A* will be optimal

* Admissible heuristics can be built from relaxations of the original
problem

* [he more accurate the heuristic Is, the fewer the paths A* will explore

