
Heuristic Search & A*

CMPUT 366: Intelligent Systems

P&M §3.6

Lecture Outline

1. Recap

2. A* Search

3. Comparing Heuristics

Recap: Heuristics
Definition:
A heuristic function is a function that returns a non-negative estimate
of the cost of the cheapest path from n to a goal node.

• e.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if is always less than or equal to the
cost of the cheapest path from to a goal node.

• i.e., is a lower bound on for any goal node

h(n)

h(n)
n

h(n) cost(⟨n, …, g⟩) g

A* Search
• A* search uses both path cost information and heuristic information to

select paths from the frontier

• Let

• estimates the total cost to the nearest goal node starting from

• A* removes paths from the frontier with smallest

• When is admissible,
 is a solution, and

 is a prefix of :

• (why?)

f(p) = cost(p) + h(p)

f(p) p

f(p)

h
p* = ⟨s, …, n, …, g⟩
p = ⟨s, …, n⟩ p*

f(p) ≤ cost(p*)

start actual

cost(p)
n estimated goal

h(n)

f(p)

A* Search Algorithm
Input: a graph; a set of start nodes; a function

while is not empty:
 select -minimizing path from frontier
 remove from
 if :
 return
 for each neighbour of :
 add to frontier
end while

goal

frontier := {⟨s⟩ ∣ s is a start node}
frontier

f ⟨n0, …, nk⟩
⟨n0, …, nk⟩ frontier

goal(nk)
⟨n0, …, nk⟩

n nk
⟨n0, …, nk, n⟩

Question:

What data structure for the
frontier implements this search
strategy?

i.e.,  
for all other paths

f(⟨n0, …, nk⟩) ≤ f(p)
p ∈ frontier

A* Search Example:
DeliveryBot

• Heuristic: Euclidean distance

• Question: What is ?
?

• A* will spend a bit of time exploring paths in
the labs before trying to go around via o109

• At that point the heuristic starts helping
more

• Question: Does breadth-first search
explore paths in the lab too?

• Question: Does breadth-first search
explore any paths that A* does not?

f(⟨o103,b3⟩)
f(⟨o103,o109⟩)

State-Space Graph for the Delivery Robot

16

8 12

4

6

4

4

4 9

7

7

4

3

6

8

6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

c�D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 3.1, Page 12 8 / 17

26 23 21 24

27

12

1817

1513

6

0

4 11

1210

6

A* Theorem
Theorem:
If there is a solution of finite cost, A* using heuristic function always returns an
optimal solution (in finite time), if

1. The branching factor is finite, and

2. All arc costs are greater than some , and

3. is an admissible heuristic.

Proof:

1. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

2. The optimal solution is guaranteed to be removed from the frontier eventually

h

ϵ > 0

h

A* Theorem Proofs: A Lexicon
An admissible heuristic:

A start node:

A goal node: (i.e.,)

The optimal solution:

A prefix of the optimal solution:

A suboptimal solution:

h(n)

f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s

z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩

p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

A* Theorem:
Optimality

Proof part 1: Optimality (no is removed before)

1. and

(i) , and

2.

(i)

(ii)

(iii)

(iv)

g p*

f(g) = cost(g) f(p*) = cost(p*)

f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk) h(z) = 0

f(p′) < f(g)

f(⟨s, …, a⟩) = cost(⟨s, …, a⟩) + h(a)

f(⟨s, …, a, b, …, z⟩) = cost(⟨s, …, a, b, …, z⟩) + h(z) = cost(⟨s, …, a⟩) + cost(a, b, …, z⟩)

h(a) ≤ cost(⟨a, b, …, z⟩)

f(p′) ≤ f(p*) < f(g)

An admissible heuristic:

A start node:
A goal node: (i.e.,)
The optimal solution:
A prefix of the optimal solution:
A suboptimal solution:

h(n)
f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s
z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩
p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

∎

A* Theorem:
Completeness

Proof part 2: A* is complete

• Every path that is removed from the frontier is only replaced by more-costly paths
(why?)

• Since individual arc costs are larger than , every path in the frontier will eventually
have cost larger than , for any finite

• Every path with at least arcs will have cost larger than

• So every path in the frontier will eventually have cost larger than the cost of the
optimal solution

• So the optimal solution will eventually be removed from the frontier

• Question: Why are we talking about costs and not -values?

ϵ
k k

k
ϵ

k

f

An admissible heuristic:

A start node:
A goal node: (i.e.,)
The optimal solution:
A prefix of the optimal solution:
A suboptimal solution:

h(n)
f(⟨n0, …, nk⟩) = cost(⟨n0, …, nk⟩) + h(nk)

s
z goal(z) = 1

p* = ⟨s, …, a, b, …z⟩
p′ = ⟨s, …, a⟩

g = ⟨s, q, …, z⟩

Comparing Heuristics

• Suppose that we have two admissible heuristics, and

• Suppose that for every node ,

Question: Which heuristic is better for search?

h1 h2

n h2(n) ≥ h1(n)

Dominating Heuristics
Definition:
A heuristic dominates a heuristic if

1. , and

2.

Theorem:
If dominates , and both heuristics are admissible, then A* using will
never remove more paths from the frontier than A* using .

• i.e., better heuristics remove weakly fewer paths

Question:
Which admissible heuristic dominates all other admissible heuristics?

h2 h1

∀n : h2(n) ≥ h1(n)

∃n : h2(n) > h1(n) .

h2 h1 h2
h1

A* Analysis
For a search graph with finite maximum branch factor and
finite maximum path length ...

1. What is the worst-case space complexity of A*?
[A:] [B:] [C:] [D: it depends]

2. What is the worst-case time complexity of A*?
[A:] [B:] [C:] [D: it depends]

Question: If A* has the same space and time complexity as
least cost first search, then what is its advantage?

b
m

O(m) O(mb) O(bm)

O(m) O(mb) O(bm)

A* Summary
• Domain knowledge can help speed up graph search

• Domain knowledge can be expressed by a heuristic function, which
estimates the cost of a path to the goal from a node

• A* considers both path cost and heuristic cost when selecting paths:

• Admissible heuristics guarantee that A* will be optimal

• Admissible heuristics can be built from relaxations of the original
problem

• The more accurate the heuristic is, the fewer the paths A* will explore

f(p) = cost(p) + h(p)

