Neural Networks

CMPUT 366: Intelligent Systems

GBC §6.0-6.4.1

Lecture Outline

- 1. Recap & Logistics
- 2. Nonlinear models
- 3. Feedforward neural networks

Logistics

- Assignment #2 due today at 11:59pm
 - Submit via eClass
- Lectures are in person from now on
 - CCIS L1-160
 - Lectures will be recorded but not "hybrid"

Recap: Calculus

- Derivatives can be used for optimization
 - Minimization: Increase x if derivative is negative & vice versa
- Partial derivatives are derivatives of "frozen" function:

$$\frac{\partial}{\partial x}f(x,y) = \frac{d}{dx}(f)_{y=y}(x)$$

Gradient of a function is a vector of all its partial derivatives:

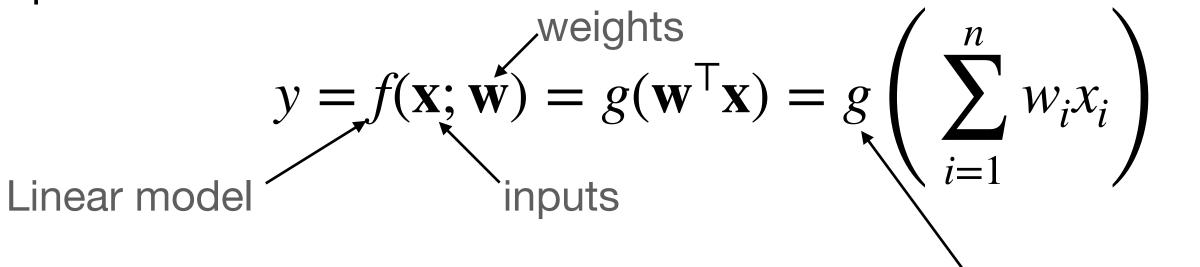
$$(\nabla f)(x,y) = \begin{bmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{bmatrix}$$

(Generalized) Linear Models

• Supervised models we have considered so far have been linear:

activation

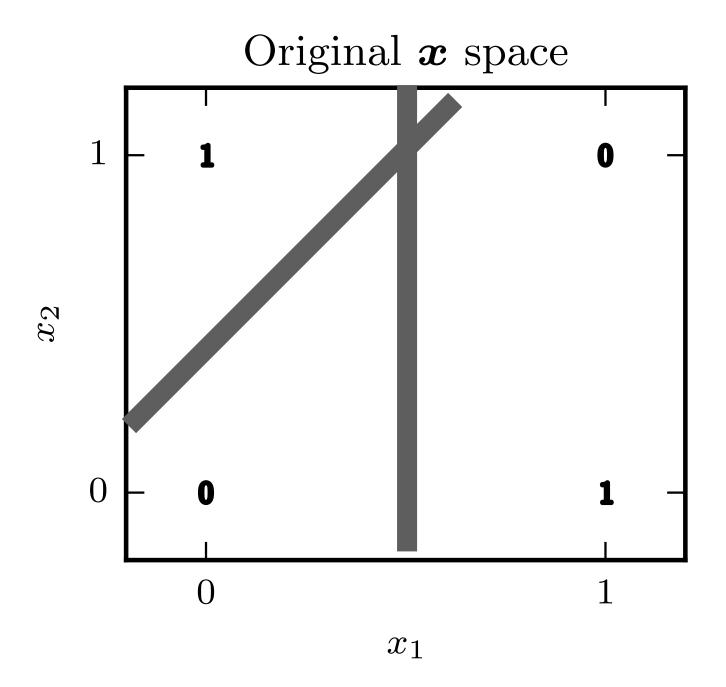
function



- Linear classification / regression
- Logistic regression
- Advantages: Efficient to fit (closed form sometimes!)
- Disadvantages: Can be really limited

Example: XOR

- The function $f(x_1, x_2) = (x_1 \times OR x_2)$ is not linearly separable
 - There is no way to draw a straight line with all of the 1's on one side and all of the 0's on the other
 - This means that no linear model can represent XOR exactly; there will always be some errors
- Question: What else could we do?



Nonlinear Features

$$y = f(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^{\mathsf{T}} \mathbf{x}) = g\left(\sum_{i=1}^{n} w_i \mathbf{x}_i\right)$$

One option: Learn a linear model on richer inputs

- 1. Define a feature mapping $\phi(\mathbf{x})$ that returns functions of the original inputs
- 2. Learn a linear model of the features instead of the inputs

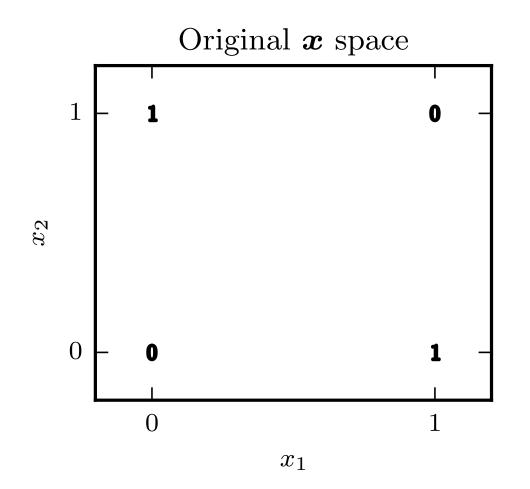
$$y = f(\mathbf{x}; \mathbf{w}) = g(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x})) = g\left(\sum_{i=1}^{n} w_i [\phi(\mathbf{x})]_i\right)$$

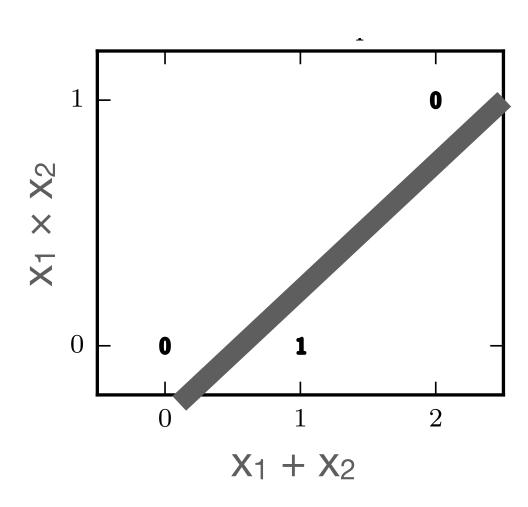
Nonlinear Features for XOR

Question:

What additional features would help?

- The product of x_1 and x_2 !
 - $\phi(x_1, x_2) = [1, x_1, x_2, x_1x_2]$
 - $\mathbf{w} = [-0.2, 0.5, 0.5, -2]$
- $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) > 0$ for (0,1) and (1,0) $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}) < 0$ for (1,1) and (0,0)





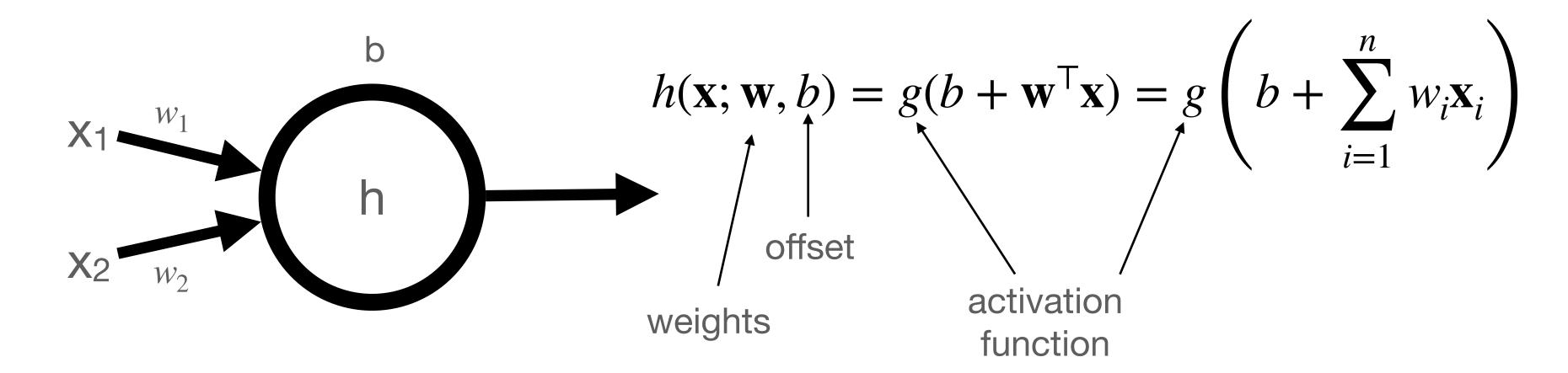
(Image: Goodfellow 2017)

Learning Nonlinear Features

- Manually constructing good features is hard
- Manually constructed features are not transferrable between domains
 - e.g., SIFT features were a revolution in computer vision, but are **only** for computer vision
- Deep learning aims to learn ϕ automatically from the data

Neural Units

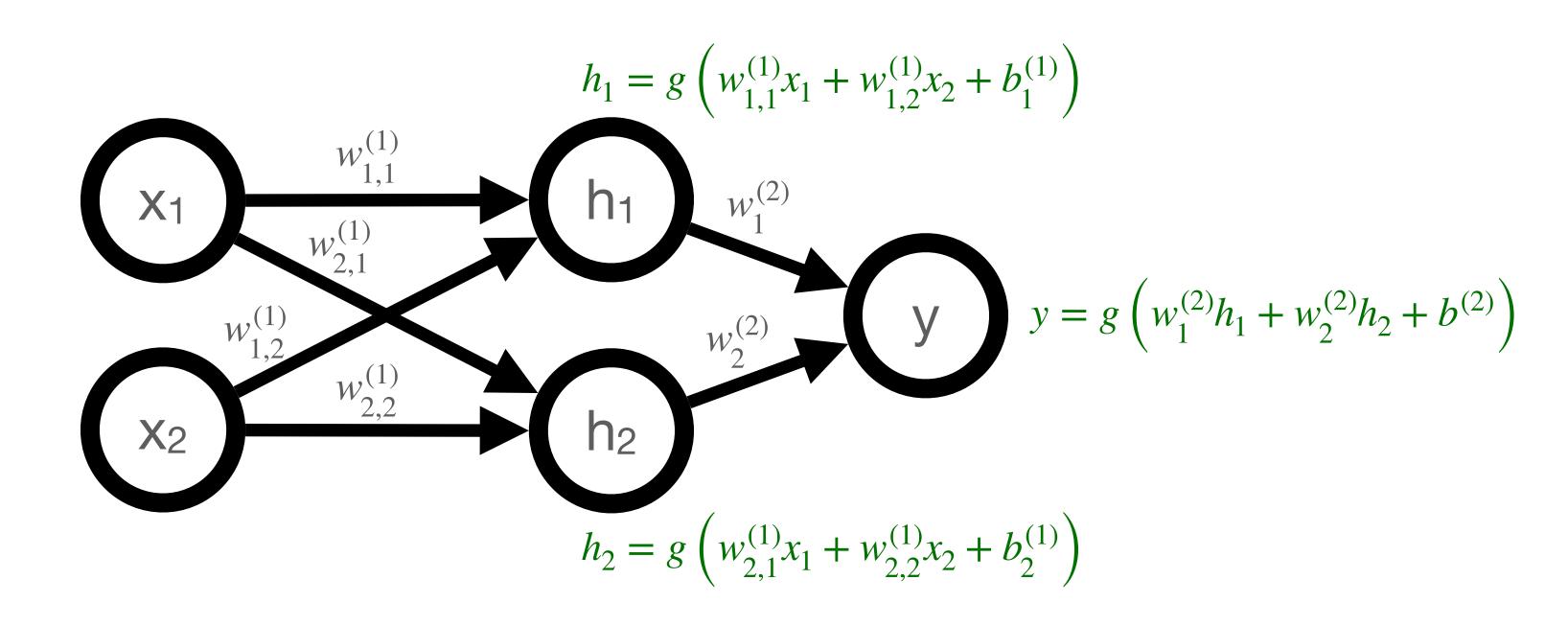
- Deep learning learns ϕ by composing little functions
- These function are called units



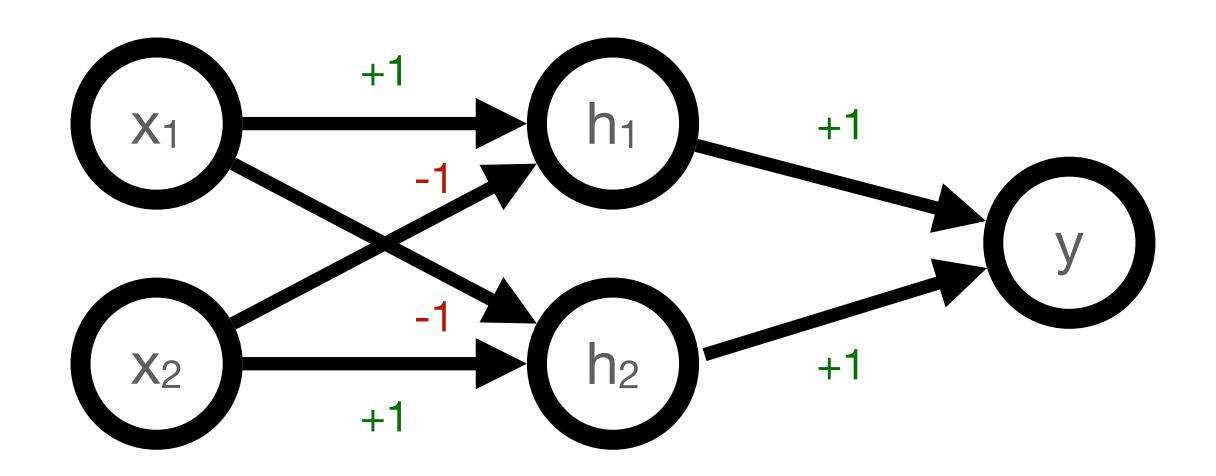
• Question: How is this different from a linear model?

Feedforward Neural Network

- A neural network is many units composed together
- Feedforward neural network: Units arranged into layers
 - Each layer takes outputs of previous layer as its inputs



Example: XOR network

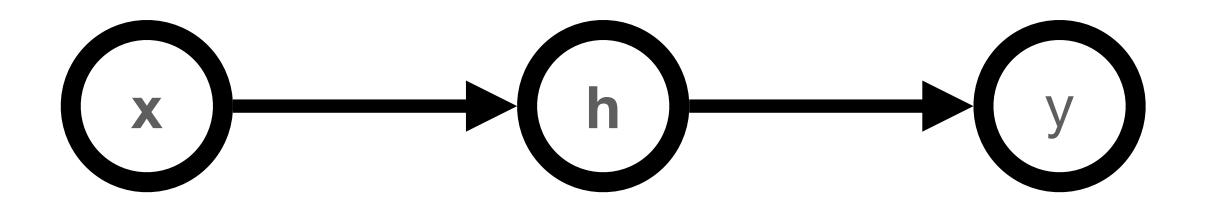


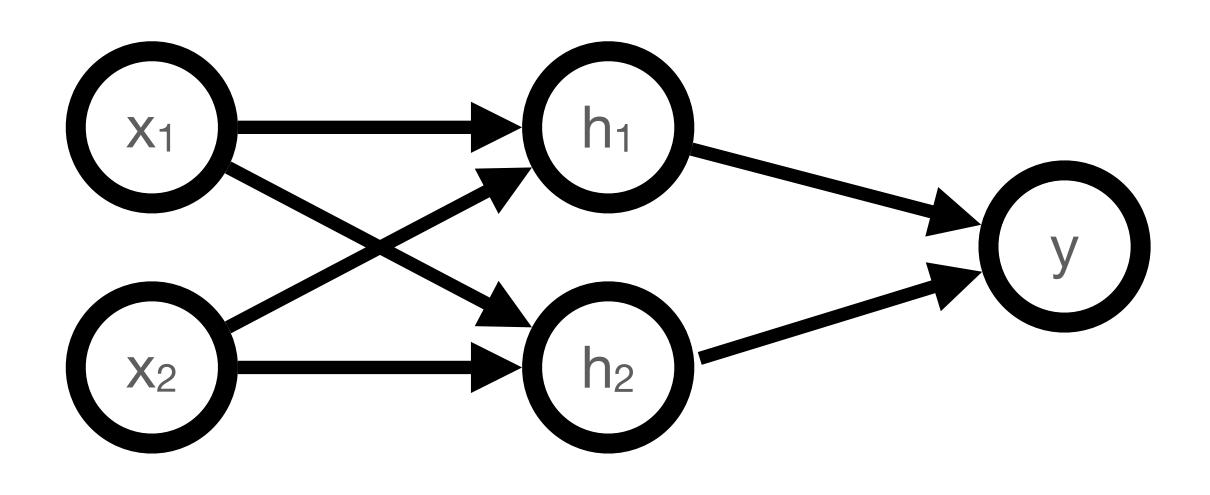
- Activation: $g(z) = \max\{0,z\}$ ("rectified linear unit")
- Offsets: 0
- Weights:
 - [+1, -1] for h_1 ; [-1, +1] for h_2
 - [+1, +1] for y

Question:

When does $h_1 = 1$?

Matrix Representation of Layers

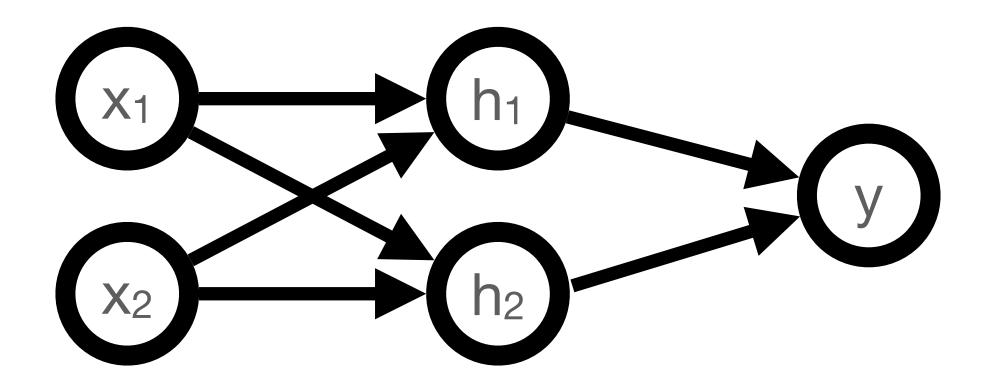




- You can think of the outputs of each layer as a vector h
- The weights from all the outputs of a previous layer to each of the units of the layer can be collected into a matrix W
- The offset term for each unit can be collected into a vector **b**:

$$\mathbf{h} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Architecture



Design decisions:

- 1. Depth: number of layers
- 2. Width: number of nodes in each layer
- 3. Fully connected?

Universal Approximation Theorem

Theorem: (Hornik et al. 1989; Cybenko 1989; Leshno et al. 1993)

A feedforward network with **one hidden layer** with a "squashing" activation or rectified linear activation and a linear output layer can approximate **any function** to within **any given error bound**, given enough hidden units.

- So a wide but shallow feedforward network can represent any function we're trying to learn!
- Question: Why bother with multiple layers? (i.e., depth > 1)

Neural Network Parameters

$$y = f(x; \theta)$$

A neural network is just a supervised model

- It is a function that takes inputs x, and computes an output y based on parameters θ
- Question: What is θ in a feedforward neural network?

Training Neural Networks

Specify a loss L and a set of training examples:

$$E = (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})$$

- Training by gradient descent:
- aining by **gradient descent**: (e.g., squared error)

 1. Compute **loss** on training data: $L(\mathbf{W}, \mathbf{b}) = \sum_{i=1}^{n} \ell\left(f(\mathbf{x}^{(i)}; \mathbf{W}, \mathbf{b}), \underline{y}^{(i)}\right)$ Prediction **Target**

Loss function

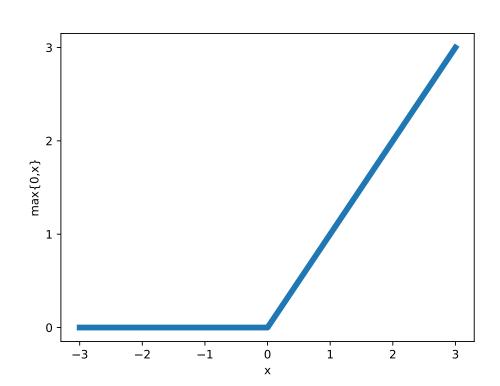
- 2. Compute gradient of loss:
- **Update parameters** to make loss smaller:

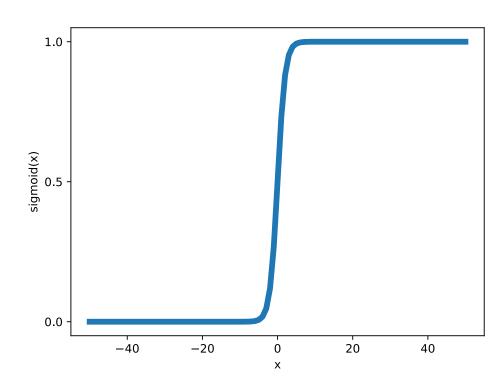
$$\begin{bmatrix} \mathbf{W}^{new} \\ \mathbf{b}^{new} \end{bmatrix} = \begin{bmatrix} \mathbf{W}^{old} \\ \mathbf{b}^{old} \end{bmatrix} - \eta \nabla L(\mathbf{W}^{old}, \mathbf{b}^{old})$$

Hidden Unit Activations

- Default choice: Rectified linear units (ReLU) $g(z) = \max\{0,z\}$
- Other common types:
 - tanh(z)

•
$$\frac{1}{1 + e^{-z}}$$
 (sigmoid)





• Sigmoid suffers from vanishing gradients; ReLU does not

Summary

- Generalized linear models are insufficiently expressive for many applications
- Composing GLMs into a network is arbitrarily expressive
 - A neural network with a single hidden layer can approximate any function
 - But the network might need to be impractically large, prone to overfitting, or inefficient to train
- Neural networks are trained using variants of gradient descent
- Architectural choices can make a network easier to train, less prone to overfitting