Neural Networks

CMPUT 366: Intelligent Systems



| ecture Outline

1. Recap & Logistics
2. Nonlinear models

3. Feedforward neural networks



| ogistics

* Assignment #2 due today at 11:59pm
o Submit via eClass

* | ectures are Iin person from now on

+ CCIS L1-160

e [ ectures will be recorded but not "hylbrid"



Recap: Calculus

* Derivatives can be used for optimization

 Minimization: Increase x it derivative Is negative & vice versa

e Partial derivatives are derivatives of "frozen” function:

0 d
— (6, y) = —(f)y=,(X)
axf Y dx / =
 Gradient of a function is a vector of all its partial derivatives:

= f(x, )
(VHxy) = |



(Generalized) Linear Models

e Supervised models we have considered so far have been linear:

/weights n
y/=f(X,;<V) =g(w'x) =g ( D wixl-)
Linear model iInputs \:1

* Linear classification / regression  _iiyation
o | function
e [ogistic regression
 Advantages: Efficient to fit (closed form sometimes!)

 Disadvantages: Can be really limited



Example: XOR

» The function f(x;,Xx,) = (x; XOR x,)
s not linearly separable Original & space

* [hereis no way to draw a straight line
with all of the 1's on one side and all of
the O's on the other

L2

 This means that no linear model can
represent XOR exactly; there will always

be some errors 0

L1

 Question: \What else could we do?



Nonlinear Features

y=fx;w) = g(W'x) =g Z WiX;
=1

One option: Learn a linear model on richer inputs

1. Define a feature mapping ¢(X) that returns functions of the original inputs

2. Learn a linear model of the features instead of the inputs

y=fx;w) = gw'px) =g | ) wlpx)],
=1



 Question:

Nonlinear Features for XOR

Original & space

What additional features would help?

» The product of x; and x, ; !

* ¢(x19x2) — [19x19x29 xl-XZ]
« w=[-0.2,0.5,0.5, — 2]

. fxX;W) =W ¢(x)> 0for (0,1) and (1,0) 1
fx;w) =w'p(x) < 0for (1,1) and (0,0) '




| earning Nonlinear Features

 Manually constructing good features iIs hard

* Manually constructed features are not transferrable between domains

* e.9., SIFT features were a revolution in computer vision, but are only for
computer vision

» Deep learning aims to learn ¢ automatically from the data



Neural Units

» Deep learning learns ¢ by composing little functions

e [hese function are called units

b n
h(x; w,b) = g(b+w'x) = g (b + Z Wixi)
X1 \ =1
XZ{' offset
2 weights activation
function

 Question: How is this different from a linear model?



Feedforward Neural Network

* A neural network is many units composed together
* Feedforward neural network: Units arranged into layers

* Each layer takes outputs of previous layer as its inputs

_ 1 1 1
hy=g (wl(,l)xl + W1(,2)x2 + bl( )>

y=g <w1(2)h1 + wz(z)hz + b(2)>

_ (1) (1) (1)
hy=g <w2,1x1 + W, 5 + b, >



Example: XOR network

+1
Qv"@ -
+1

» Activation: g(z) = max{0,z} ("rectified linear unit")

o Offsets: ()
» Weights: Question:
o [+1, — 1] fOr hl’ [_1,+ 1] fOr h2 When doeshl — 17

e |+1,+ 1] fory



Vlatrix Representation of Layers

* You can think of the outputs of
each layer as a vector h

* [he weights from all the outputs
of a previous layer to each of the
units of the layer can be collected

° 0 into a matrix W
. o e [he offset term for each unit can

be collected into a vector b:

h=g(Wx+Db)



Architecture

O 0
O O

Design decisions:

1. Depth: number of layers

2. Width: number of nodes in each layer

3. Fully connected?



Universal Approximation Theorem

Theorem:
A feedforward network with one hidden layer with a "squashing”
activation or rectified linear activation and a linear output layer can

approximate any function to within any given error bound, given
enough hidden units.

S0 a wide but shallow feedforward network can represent any
function we're trying to learn!

* Question: Why bother with multiple layers? (i.e., depth > 1)



Neural Network Parameters

A neural network Is just a supervised model

* |tis afunction that takes inputs X, and computes an output y based on
parameters @

e Question: What is @ in a feedforward neural network?



Training Neural Networks

« Specify a loss L and a set of training examples:

L = (X(l)a y(l))a I (X(n)a y(n))
Loss function
* [raining by gradient descent: / (€.g., squared error)

1. Compute loss on training data: L(W, b) = Z A f(x(’) W.b), y(l))

Prediction Target

2. Compute gradient of loss: VL(W,Db)

(Next lecture)

3. Update parameters to make loss smaller:

new old
[VJ@«?W ] _ [\g)ld] — 5 VL(WO, pold)



Hidden Unit Activations

o Default choice: Rectified linear units (RelLU)
g(z) = max{0,z]

e Other common types:

 tanh(z)
|
l +e%

(sigmoid)

e Sigmoid suffers from vanishing gradients; RelLU does not



Summary

Generalized linear models are insufficiently expressive for many applications
Composing GLMs into a network is arbitrarily expressive

* A neural network with a single hidden layer can approximate any function

e But the network might need to be impractically large, prone to overfitting, or
inefficient to train

Neural networks are trained using variants of gradient descent

Architectural choices can make a network easier to train, less prone to
overfitting



