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Logistics & Assignment #1

• Assignment #1 is due Feb 4 11:59pm (next week) 

• Office hours have begun! 

• Not mandatory; for getting help from TAs 

• There are no labs for this course



Lecture Outline

1. Recap 

2. Expected Value 

3. Structure 

4. Marginal Independence 

5. Conditional Independence



Recap: Probability
• Probability is a numerical measure of uncertainty 

• Not a measure of truth 

• Semantics:  

• A possible world is a complete assignment of values to 
variables 

• Every possible world has a probability 

• Probability of a proposition is the sum of probabilities of 
possible worlds in which the statement is true



Recap: 
Conditional Probability

• When we receive evidence in the form of a proposition , it rules out all of the 
possible worlds in which  is false 

• We set those worlds' probability to 0, and rescale remaining probabilities to 
sum to 1 

• Result is probabilities conditional on e: 

e
e

P(h ∣ e)



Expected Value
• The expected value of a function  on a random variable is the weighted 

average of that function over the domain of the random variable, weighted by 
the probability of each value: 

  

• The conditional expected value of a function  is the average value of the 
function over the domain, weighted by the conditional probability of each value: 

 

f

𝔼 [f(X)] = ∑
x∈dom(X)

P(X = x)f(x)

f

𝔼 [f(X) ∣ Y = y] = ∑
x∈dom(X)

P(X = x ∣ Y = y)f(x)



Expected Value Examples

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[Y] = 3

𝔼[X2] ≃ 10 𝔼[Y2] ≃ 12

X Y

P(
X

)

P(
Y

)



Unstructured  
Joint Distributions

• Probabilities are not fully arbitrary 

• Semantics tell us probabilities given the joint distribution. 

• Semantics alone do not restrict probabilities very much 

• In general, we might need to explicitly specify the entire joint distribution 

• Question: How many numbers do we need to assign to fully specify a 
joint distribution of  binary random variables? 

• We call situations where we have to explicitly enumerate the entire joint 
distribution unstructured

k



Structure
• Unstructured domains are very hard to reason about 

• Fortunately, most real problems are generated by some sort of 
underlying process 

• This gives us structure that we can exploit to represent and reason 
about probabilities in a more compact way 

• We can compute any required joint probabilities based on the process, 
instead of specifying every possible joint probability explicitly 

• Simplest kind of structure is when random variables don't interact 



Marginal Independence

When the value of one variable never gives you information about the value of the 
other, we say the two variables are marginally independent. 

Definition: 
Random variables  and  are marginally independent iff 

1. , and  

2.  

for all values of  and .

X Y

P(X = x ∣ Y = y) = P(X = x)

P(Y = y ∣ X = x) = P(Y = y)

x ∈ dom(X) y ∈ dom(Y)



Marginal Independence Example
• I flip four fair coins, and get four results:  

• Question: What is the probability that  is heads? 

•  

• Suppose that , , and  are tails 

• Question: Now what is the probability that  is heads? 

•  

• Why?

C1, C2, C3, C4

C1

P(C1 = heads)

C2 C3 C4

C1

P(C1 = heads ∣ C2 = tails, C3 = tails, C4 = tails)



Properties of Marginal Independence
Proposition: 
If  and  are marginally independent, then 

     

for all values of  and . 

Proof: 

1.    Chain rule 

2.                 Marginal independence 

    

X Y

P(X = x, Y = y) = P(X = x)P(Y = y)

x ∈ dom(X) y ∈ dom(Y)

P(X = x, Y = y) = P(X = x |Y = y)P(Y = y)

P(X = x, Y = y) = P(X = x)P(Y = y)

∎



Exploiting 
Marginal Independence

• Instead of storing the entire joint distribution, we 
can store 4 marginal distributions, and use them 
to recover joint probabilities 

• Question: How many numbers do we need to 
assign to fully specify the marginal distribution 
for a single binary variable? 

• If everything is independent, learning from 
observations is hopeless (why?) 

• But also if nothing is independent 
• The intermediate case, where many variables 

are independent, is ideal

C1 C2 C3 C4 P
H H H H 0.0625
H H H T 0.0625
H H T H 0.0625
H H T T 0.0625
H T H H 0.0625
H T H T 0.0625
H T T H 0.0625
H T T T 0.0625
T H H H 0.0625
T H H T 0.0625
T H T H 0.0625
T H T T 0.0625
T T H H 0.0625
T T H T 0.0625
T T T H 0.0625

C1 P
H 0.5

C2 P
H 0.5

C3 P
H 0.5

C4 P
H 0.5



Clock Scenario
Example: 
• I have a stylish but impractical clock with no number markings 
• Two students, Alice and Bob, both look at the clock at the same 

time, and form opinions about what time it is 
• Their opinion of the time is directly affected by the actual time 
• They don't talk to each other, so Alice's opinion of the time is 

not directly affected by Bob's opinion of the time (& vice versa) 

• Question: Are  and  marginally independent? 

 

• Question: If we know it is 10:09.  Are  and  independent? 

  

A B

P(A ∣ B) ≠ P(A)
A B

P(A ∣ B, T = 10:09) = P(A ∣ T = 10:09)

Random variables: 

 - Time Alice thinks it is 

 - Time Bob thinks it is 

 - Actual time

A

B

T



Conditional Independence
When knowing the value of a third variable  makes two variables  
independent, we say that they are conditionally independent given  (or 
independent conditional on ). 

Definition: 
Random variables  and  are conditionally independent given Z iff 

  

for all values of , , and .   
We write this using the notation  . 

Clock example:  and  are conditionally independent given .

Z A, B
Z

Z

X Y

P(X = x ∣ Y = y, Z = z) = P(X = x ∣ Z = z)

x ∈ dom(X) y ∈ dom(Y) z ∈ dom(Z)
X ⊥⊥ Y ∣ Z

A B T



Properties of  
Conditional Independence

Proposition: 
If  and  are conditionally independent given , then 

     

for all values of , , and . 

Proof: 

1.       Chain rule 

2.    Conditional independence 

    

X Y Z

P(X = x, Y = y ∣ Z) = P(X = x ∣ Z)P(Y = y ∣ Z)

x ∈ dom(X) y ∈ dom(Y) z ∈ dom(Z)

P(X = x, Y = y ∣ Z) = P(X = x |Y = y, Z = z)P(Y = y ∣ Z)

P(X = x, Y = y ∣ Z) = P(X = x ∣ Z)P(Y = y ∣ Z)

∎



Properties of  
Conditional Independence

Question: Is conditional independence commutative? 

• i.e., If , is it also true that ? 

Proof: 

  previous result 

                     commutativity of multiplication 

                   

X ⊥⊥ Y ∣ Z Y ⊥⊥ X ∣ Z

X ⊥⊥ Y ∣ Z ⟺ P(X, Y ∣ Z) = P(X ∣ Z)P(Y ∣ Z)

⟺ P(Y, X ∣ Z) = P(Y ∣ Z)P(X ∣ Z)

⟺ Y ⊥⊥ X ∣ Z ∎



Exploiting Conditional Independence

If  and  are marginally independent given , then we can again just store smaller 
tables and recover joint distributions by multiplication. 

• Question: How many tables do we need to store in order to be able to compute 
the joint distribution of  when  and  are independent given ? 

• i.e., how many table to be able to compute  for every 
combination of ? 

Preview: In the upcoming lectures, we will see how to efficiently exploit complex 
structures of conditional independence

X Y Z

X, Y, Z X Y Z

P(X = x, Y = y, Z = z)
x, y, z



Simplified Clock Example
A T P(A | T)

12 1 0.25

1 1 0.50

2 1 0.25

1 2 0.25

2 2 0.50

3 2 0.25

2 3 0.25

3 3 0.50

4 3 0.25

⋮

B T P(B | T)

12 1 0.25

1 1 0.5

2 1 0.25

1 2 0.25

2 2 0.5

3 2 0.25

2 3 0.25

3 3 0.5

4 3 0.25

⋮

T P(T)

1 0

2 1/10

3 1/10

4 1/10

5 1/10

6 1/10

7 1/10

8 1/10

9 1/10

10 1/10

11 1/10

12 0

P(A = 1,B = 2,T = 2)
= P(A = 1 ∣ T = 2)P(B = 2 ∣ T = 2)P(T = 2)
= 0.25 × 0.5 × 0.10
= 0.0125

P(A = 1,B = 2,T = 1)
= P(A = 1 ∣ T = 1)P(B = 2 ∣ T = 1)P(T = 1)
= 0.5 × 0.25 × 0.0
= 0



Caveats
• Often, when two variables are marginally independent, they are also conditionally independent 

given a third variable 

• E.g., coins , and  are marginally independent, and also conditionally independent given 
:  Learning the value of  does not make  any more informative about . 

• This is not always true 

• Consider another random variable:  is true if both  and  are the same value 

•  and  are marginally independent:  

• In fact,  and  are also both marginally independent of B:  

• But if I know the value of , then knowing the value of  tells me exactly what the value of  
must be:  

•  and  are not conditionally independent given B

C1 C2
C3 C3 C2 C1

B C1 C2

C1 C2 P(C1 = heads ∣ C2 = heads) = P(C1 = heads)

C1 C2 P(C1 ∣ B = true) = P(C1)

B C1 C2
P(C1 = heads ∣ B = true, C2 = heads) ≠ P(C1 = heads ∣ B = true)

C1 C2



Summary
• Unstructured joint distributions are exponentially expensive to represent (and 

operate on) 

• Marginal and conditional independence are especially important forms of 
structure that a distribution can have 

• Vastly reduces the cost of representation and computation 

• Caveat: The relationship between marginal and conditional independence is 
not fixed 

• Joint probabilities of (conditionally or marginally) independent random variables 
can be computed by multiplication


