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CMPUT 366: Intelligent Systems



| ogistics & Assignment #1

 Assignment #1 is due Feb 4 11:59pm (hext week)
o Office hours have begun!
 Not mandatory; for getting help from TAs

e There are no labs for this course
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Recap: Probabillity

* Probability is a numerical measure of uncertainty
* Not a measure of truth
 Semantics:

A possible world is a complete assignment of values to
variables

e Every possible world has a probabillity

* Probabllity of a proposition is the sum of probabillities of
possible worlds In which the statement Is true




Recap:
Conditional Probability

 When we receive evidence in the form of a proposition e, it rules out all of the
possible worlds in which e is false

* We set those worlds' probabillity to 0, and rescale remaining probabillities to
sum to 1

» Result is probabilities conditional on e: P(h | e)



=Xpected Value

» The expected value of a function f on a random variable is the weighted

average of that function over the domain of the random variable, weighted by
the probability of each value:

- [f00] = ), PX=x)f)

xedom(X)

 The conditional expected value of a function f is the average value of the
function over the domain, weighted by the conditional probability of each value:

‘[f(X)‘Y=Y] = Z PX =x|Y=y)fx)

xedom(X)




EXpected Value Examples

P(X)
P(Y)




Unstructured
Joint Distributions

* Probabillities are not fully arbitrary
 Semantics tell us probabilities given the joint distribution.
* Semantics alone do not restrict probabilities very much
* |n general, we might need to explicitly specify the entire joint distribution

* Question: How many numbers do we need to assign to fully specify a
joint distribution of k binary random variables?

* We call situations where we have to explicitly enumerate the entire joint
distribution unstructured



Structure

* Unstructured domains are very hard to reason about

* Fortunately, most real problems are generated by some sort of
underlying process

* This gives us structure that we can exploit to represent and reason
about probabilities iIn a more compact way

 \We can compute any required joint probabillities based on the process,
iINnstead of specitying every possible joint probability explicitly

o Simplest kind of structure is when random variables don't interact



Marginal Independence

When the value of one variable never gives you information about the value of the
other, we say the two variables are marginally independent.

Definition:

Random variables X and Y are marginally independent iff
1. PX=x|Y=y)=PX =x), and
2. PY=y|X=x)=PY =Yy)

for all values of x € dom(X) andy € dom(Y).



Marginal Independence Example

» | flip four fair coins, and get four results: C, C,, C5, C4

» Question: What is the probability that C; is heads?

« P(C, = heads)

e Suppose that C,, C5, and C, are tails

» Question: Now what is the probability that C; is heads?

» P(C, = heads | C, = tails, C5 = tails, C, = tails)

o Why?



Properties of Marginal Independence

Proposition:
if X and Y are marginally independent, then

PX=x,Y=y)=PX=x)P(Y =Yy)
for all values of x € dom(X) andy € dom(Y).

Proof:

P =Y =) =[P = x| Y = P =)

2. PX=x,Y=y)=PX=x)P(Y =)
-



EXploiting
Marginal Independence

* |nstead of storing the entire joint distribution, we

. . : . H H H H 0.0625

can store 4 marginal distributions, and use them CHOH T 0.0695

tO recover :Oiﬂt probabi\ities H H T H 0.0625

- H H T T 0.0625

e Question: How many numbers do we need to T OH H 00655

assign to fully specity the marginal distribution 1T H T 0.0625

for a single binary variable” H T T H 0.0625

_ o | H T T T 0.0625

* |t everything is independent, learning from T H H H 0.0625

observations is hopeless (why?) T HH T 0.0625

| _ o T H T H 0.0625

C. P * But also if nothing is independent T H T T0.0625
¥ 05 _ _ , T T H H 0.0625
 [he intermediate case, where many variables “ 4 T 00695

are independent, Is ideal "~ T H 0.0625



Clock Scenario

Example:

* | have a stylish but impractical clock with no number markings

e [wo students, Alice and Bob, both look at the clock at the same
time, and form opinions about what time it is

* Their opinion of the time is directly affected by the actual time

 They don't talk to each other, so Alice's opinion of the time is
not directly affected by Bob's opinion of the time (& vice versa)

Random variables:
e Question: Are A and B marginally independent?

P(A | B) % P(A) A - Time Alice thinks it is
« Question: If we know it is 10:09. Are A and B independent? B - Time Bob thinks it is
PA | B, T=10:09) =PA | T = 10:09) T - Actual time




Conditional Independence

When knowing the value of a third variable Z makes two variables A, B
independent, we say that they are conditionally independent given Z (or
independent conditional on Z2).

Definition:
Random variables X and Y are conditionally independent given Z iff

PX=x|Y=y,Z=2)=PX=x|Z=7)

for all values of x € dom(X), y € dom(Y), and z € dom(Z).
We write this using the notation X 1L Y | Z .

Clock example: A and B are conditionally independent given 7.



Properties of
Conditional Independence

Proposition:
if X and Y are conditionally independent given Z, then

PX=xY=y|Z2)=PX=x|2)P(Y=y|Z)
for all values of x € dom(X), y € dom(Y), and z € dom(Z).

Proof:

1. PX=x,Y=y|Z) = D(Y =y | Z)

> PX=x,Y=y|2)=PX=x|2)PY¥ =y |2Z)
-



Properties of
Conditional Independence

Question: Is conditional independence commutative?

e je,If X1 Y|Z isitalsotruethatY 1L X | Z7

Proof:

X1Y|Z < PX,Y|Z)=PX|2)PY|Z)
= PY,X|Z2)=PY|2)P(X|Z)
= YU X|Z _



Exploiting Conditional Independence

f X and Y are marginally independent given Z, then we can again just store smaller
tables and recover joint distributions by multiplication.

 Question: How many tables do we need to store in order to be able to compute
the joint distribution of X, Y, Z when X and Y are independent given Z7

* i.e., how many table to be able to compute P(X = x, Y =y, Z = 7) for every
combination of x, y, 77

Preview: In the upcoming lectures, we will see how to efficiently exploit complex
structures of conditional independence




Simplified Clock Example

12 1 025 19 1 095 1 0
1 1 0.50 2 110
T 1 05 PA=1B=2T=2)
> 1 025 > 1 025 3 1710 —PA=1|T=2PB=2|T=2)PT=2)
1 2 0.25 1 9 025 4 110 =0.25x%x0.5x0.10
> 2 050 > 2 05 5 1710 = 00123
3 2 025 3 2 025 6 1710
. 110 PA=1B=2T=1)
2 3 025 2 3 025 . o =PA=1|T=DPB=2|T=1)P(T=1)
3 3 0.50 3 3 0.5 =0.5%x0.25x0.0
4 3 025 4 3 025 > 1710 =0
10 1/10
» O
o ° 11 1/10

12 0



Caveats

* (Often, when two variables are marginally independent, they are also conditionally independent
given a third variable

 E.g., coins Cy, and C, are marginally independent, and also conditionally independent given
C5: Learning the value of C5 does not make C, any more informative about C;.

* T[hisis not always true

» Consider another random variable: B is true if both C; and C, are the same value
« (C;and C,are marginally independent: P(C; = heads | C, = heads) = P(C, = heads)
» Infact, C; and G, are also both marginally independent of B: P(C, | B = true) = P(C,)

e But if | know the value of B, then knowing the value of C, tells me exactly what the value of C,
must be: P(C; = heads | B = true, C, = heads) # P(C, = heads | B = true)

» (;and (G, are not conditionally independent given B



Summary

* Unstructured joint distributions are exponentially expensive to represent (and
operate on)

* Marginal and conditional independence are especially important forms of
structure that a distribution can have

e Vastly reduces the cost of representation and computation

 Caveat: The relationship between marginal and conditional independence is
not fixed

* Joint probabillities of (conditionally or marginally) independent random variables
can be computed by multiplication




