Conditional Independence

CMPUT 366: Intelligent Systems

P&M §8.2

Logistics & Assignment #1

- Assignment #1 is due Feb 4 11:59pm (next week)
- Office hours have begun!
 - Not mandatory; for getting help from TAs •
 - There are no labs for this course

Lecture Outline

- 1. Recap
- 2. Expected Value
- 3. Structure
- 4. Marginal Independence
- 5. Conditional Independence

- **Probability** is a numerical measure of **uncertainty** \bullet
 - Not a measure of truth
- **Semantics:** \bullet
 - variables
 - Every possible world has a probability
 - Probability of a proposition is the sum of probabilities of possible worlds in which the statement is true

Recap: Probability

• A possible world is a complete assignment of values to

Recap: Conditional Probability

- possible worlds in which *e* is false
 - sum to 1
- Result is probabilities conditional on $e: P(h \mid e)$

• When we receive evidence in the form of a proposition e, it rules out all of the

• We set those worlds' probability to 0, and rescale remaining probabilities to

Expected Value

• The **expected value** of a function f on a random variable is the weighted the **probability** of each value:

$$\mathbb{E}\left[f(X)\right] =$$

 $x \in C$

$$\mathbb{E}\left[f(X) \mid Y = y\right] =$$

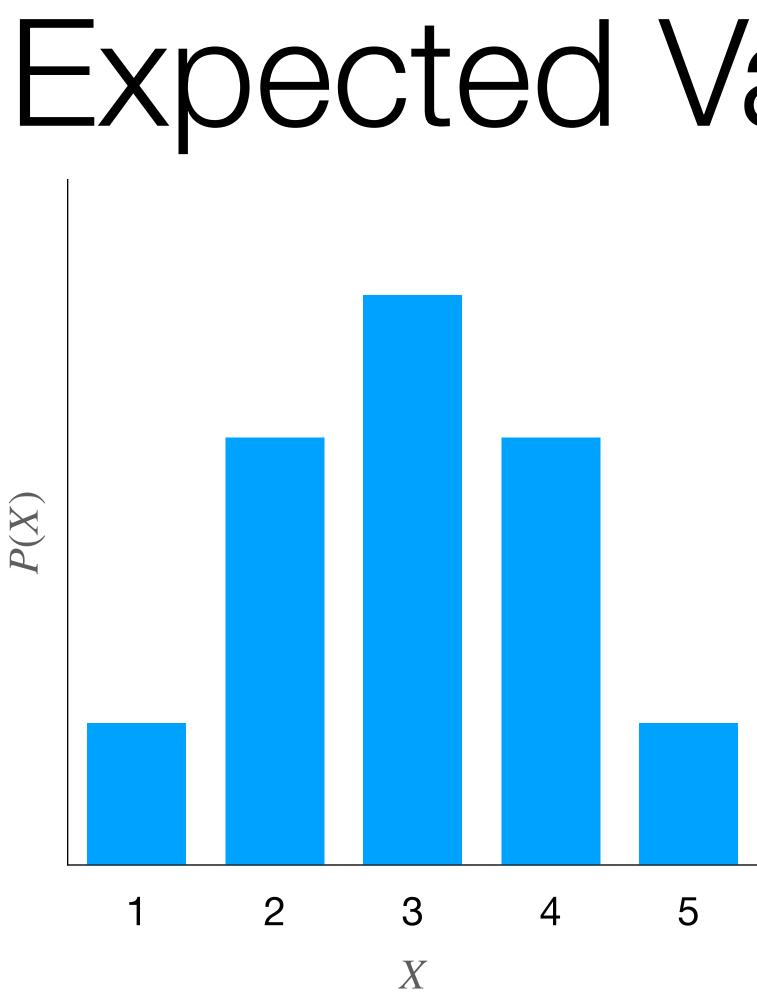
 $x \in$

average of that function over the domain of the random variable, weighted by

$$\sum_{dom(X)} P(X = x)f(x)$$

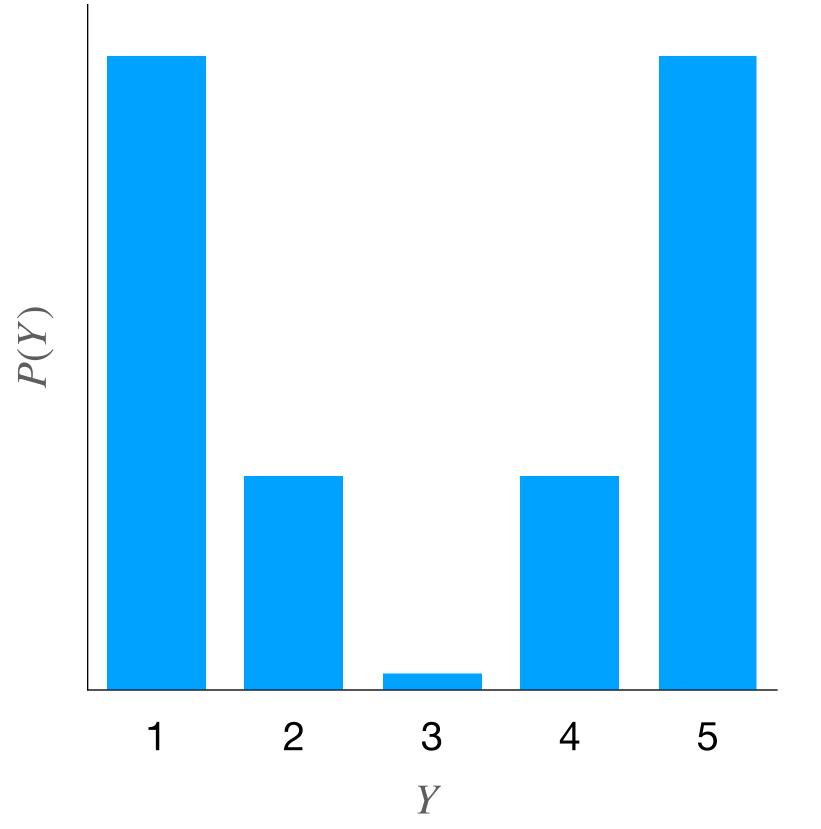
• The conditional expected value of a function f is the average value of the function over the domain, weighted by the **conditional probability** of each value:

$$\sum_{x \in Om(X)} P(X = x \mid Y = y)f(x)$$



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 10$

Expected Value Examples



 $\mathbb{E}[Y] = 3$ $\mathbb{E}[Y^2] \simeq 12$

Unstructured Joint Distributions

- Probabilities are not fully **arbitrary**
 - **Semantics** tell us probabilities given the joint distribution.
 - Semantics alone do not restrict probabilities very much
- In general, we might need to **explicitly** specify the entire **joint distribution**
 - **Question:** How many numbers do we need to assign to fully specify a joint distribution of k binary random variables?
- We call situations where we have to explicitly enumerate the entire joint distribution unstructured

Structure

- Unstructured domains are very hard to reason about
- Fortunately, most real problems are generated by some sort of underlying process
 - This gives us structure that we can exploit to represent and reason about probabilities in a more compact way
 - We can **compute** any required joint probabilities based on the process, instead of specifying every possible joint probability explicitly
- Simplest kind of structure is when random variables don't interact

Marginal Independence

other, we say the two variables are marginally independent.

Definition:

Random variables X and Y are marginally independent iff

- 1. P(X = x | Y = y) = P(X = x), and
- 2. P(Y = y | X = x) = P(Y = y)

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

- When the value of one variable **never** gives you information about the value of the

Marginal Independence Example

- I flip four fair coins, and get four results: C_1, C_2, C_3, C_4
- Question: What is the probability that C_1 is heads?

•
$$P(C_1 = heads)$$

- Suppose that C_2 , C_3 , and C_4 are tails
- Question: Now what is the probability that C_1 is heads?
 - $P(C_1 = heads \mid C_2 = tails, C_3 = tails, C_4 = tails)$
 - Why?

Properties of Marginal Independence

Proposition:

If X and Y are marginally independent, then

$$P(X = x, Y = y)$$

for all values of $x \in dom(X)$ and $y \in dom(Y)$.

Proof:

- 1. P(X = x, Y = y) = P(X = x | Y = y)P(Y = y) Chain rule
- 2. P(X = x, Y = y) = P(X = x)P(Y = y)

y) = P(X = x)P(Y = y)

Marginal independence

C1 P H 0.5

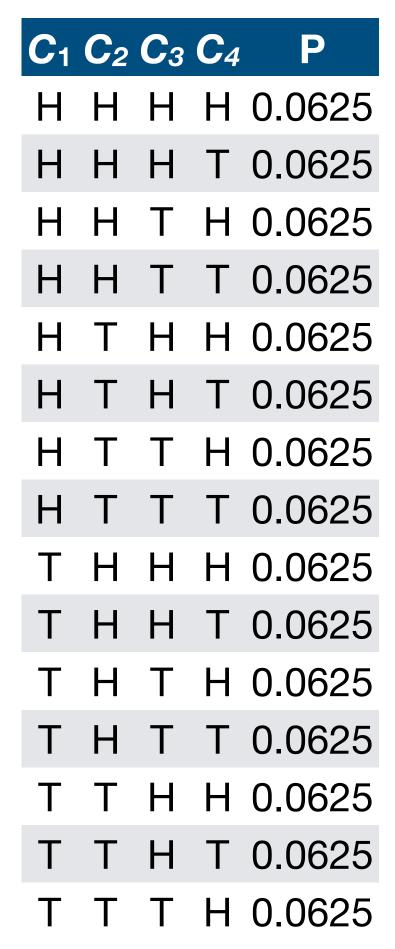
C ₂	Ρ
Н	0.5

C ₃	Ρ
Н	0.5

C 4	Ρ
Н	0.5

Exploiting Marginal Independence

- Instead of storing the entire joint distribution, we can store 4 marginal distributions, and use them to recover joint probabilities
 - Question: How many numbers do we need to assign to fully specify the marginal distribution for a single binary variable?
- If everything is independent, learning from observations is hopeless (why?)
 - But also if **nothing** is independent
 - The intermediate case, where many variables are independent, is ideal



Example:

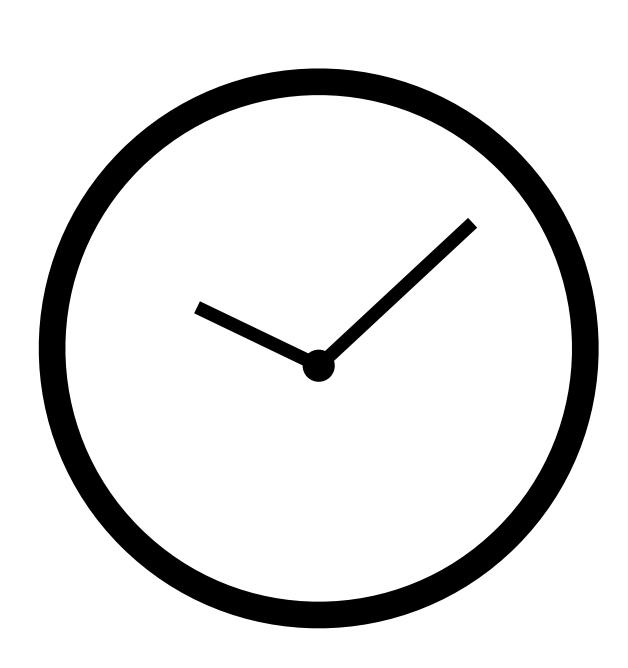
- I have a stylish but impractical clock with no number markings
- Two students, Alice and Bob, both look at the clock at the same time, and form opinions about what time it is
 - Their opinion of the time is **directly affected** by the actual time They don't talk to each other, so Alice's opinion of the time is not directly affected by Bob's opinion of the time (& vice versa)
 - lacksquare
- **Question:** Are A and B marginally independent?

$$P(A \mid B) \neq P(A)$$

Question: If we know it is 10:09. Are A and B independent?

 $P(A \mid B, T = 10:09) = P(A \mid T = 10:09)$

Clock Scenario



Random variables:

- A Time Alice thinks it is
- **B** Time Bob thinks it is

$$T$$
 - Actual time

When knowing the value of a **third** variable Z makes two variables A, Bindependent, we say that they are **conditionally independent given** Z (or independent conditional on Z).

Definition:

Random variables X and Y are conditionally independent given Z iff

$$P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$. We write this using the notation $X \perp Y \mid Z$.

Clock example: A and B are conditionally independent given T.

Conditional Independence

Properties of Conditional Independence

Proposition:

If X and Y are conditionally independent given Z, then

$$P(X = x, Y = y \mid Z)$$

for all values of $x \in dom(X)$, $y \in dom(Y)$, and $z \in dom(Z)$.

Proof:

1.
$$P(X = x, Y = y | Z) = P(X = x | Y = y, Z = z) P(Y = y | Z)$$
 Chain rule
2. $P(X = x, Y = y | Z) = P(X = x | Z) P(Y = y | Z)$ Conditional independence

 $= P(X = x \mid Z)P(Y = y \mid Z)$

Properties of Conditional Independence

Question: Is conditional independence commutative?

• i.e., If $X \perp \!\!\!\perp Y \mid Z$, is it also true that $Y \perp \!\!\!\perp X \mid Z$? **Proof:**

Exploiting Conditional Independence

If X and Y are marginally independent given Z, then we can again just store smaller tables and recover joint distributions by multiplication.

- lacksquarethe joint distribution of X, Y, Z when X and Y are independent given Z?
 - combination of x, y, z?

Preview: In the upcoming lectures, we will see how to efficiently exploit **complex** structures of conditional independence

Question: How many tables do we need to store in order to be able to compute

• i.e., how many table to be able to compute P(X = x, Y = y, Z = z) for every

Simplified Clock Example

A	T	P(A T)
12	1	0.25
1	1	0.50
2	1	0.25
1	2	0.25
2	2	0.50
3	2	0.25
2	3	0.25
3	3	0.50
4	3	0.25

B	T	P(B T)
12	1	0.25
1	1	0.5
2	1	0.25
1	2	0.25
2	2	0.5
3	2	0.25
2	3	0.25
3	3	0.5
4	3	0.25

Τ	P(T)
1	0
2	1/10
3	1/10
4	1/10
5	1/10
6	1/10
7	1/10
8	1/10
9	1/10
10	1/10
11	1/10
12	0

Caveats

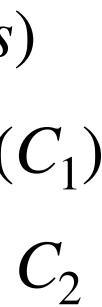
- \bullet given a third variable
 - C_3 : Learning the value of C_3 does not make C_2 any more informative about C_1 .
- This is **not always true**
 - Consider another random variable: B is true if both C_1 and C_2 are the same value
 - C_1 and C_2 are marginally independent: $P(C_1 = heads \mid C_2 = heads) = P(C_1 = heads)$
 - - C_1 and C_2 are not conditionally independent given B

Often, when two variables are marginally independent, they are also conditionally independent

• E.g., coins C_1 , and C_2 are marginally independent, and also conditionally independent given

• In fact, C_1 and C_2 are also both marginally independent of **B**: $P(C_1 \mid B = true) = P(C_1)$

• But if I know the value of B, then knowing the value of C_1 tells me exactly what the value of C_2 must be: $P(C_1 = heads \mid B = true, C_2 = heads) \neq P(C_1 = heads \mid B = true)$



Summary

- Unstructured joint distributions are exponentially expensive to represent (and operate on)
- Marginal and conditional independence are especially important forms of structure that a distribution can have
 - Vastly reduces the cost of representation and computation
 - Caveat: The relationship between marginal and conditional independence is not fixed
- Joint probabilities of (conditionally or marginally) independent random variables can be computed by multiplication