Markov Decision Processes

CMPUT 366: Intelligent Systems

S&B §3.0-3.4

Lecture Outline

- 1. Recap & Logistics
- 2. Markov Decision Processes
- 3. Returns & Episodes

Logistics

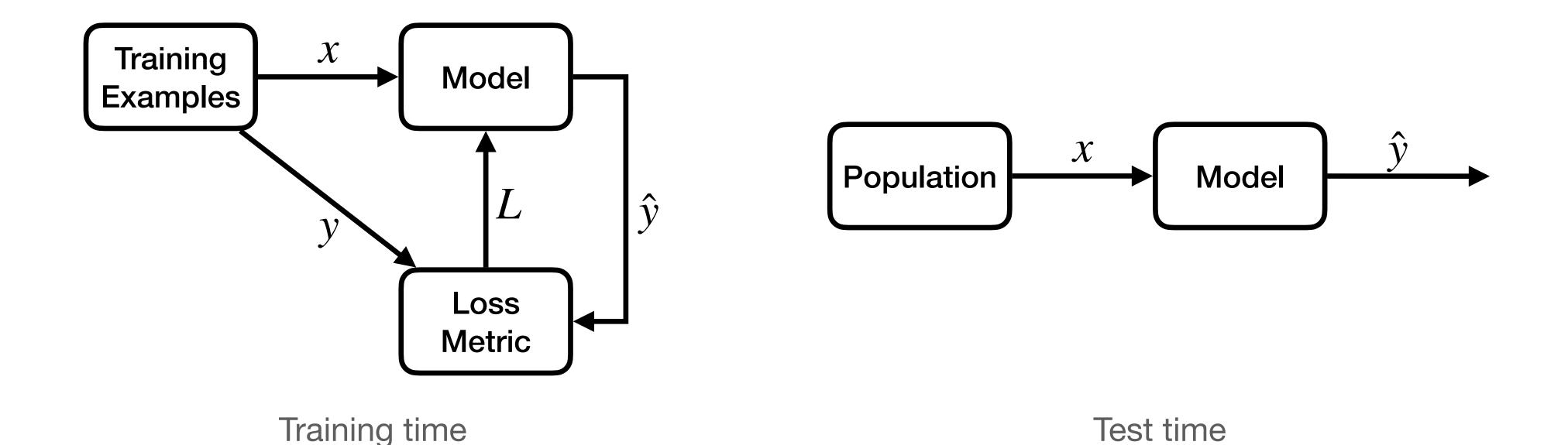
- Midterm is being marked
 - Spot checks: You will be contacted next week if selected
- Assignment 3 is available
 - Due: Fri, March 25 at 11:59pm Mountain time
 - Stub code uses Tensorflow version 2.8.0
 - OS X installation: python3 -m pip install tensorflow

Recap: Deep Learning

- Feedforward neural networks are extremely flexible parametric models that can be trained by gradient descent
- Convolutional neural networks add pooling and convolution operations
 - Vastly more efficient to train on vision tasks, due to fewer parameters and domain-appropriate invariances
- Recurrent neural networks process elements of a sequence one at a time, usually while maintaining state
 - Same set of weights applied to each element

Recap: Supervised Learning

Neural networks are generally used to solve supervised learning tasks: Selecting a hypothesis $h: X \to Y$ that maps from input features to target features.



Example: CanBot

- CanBot's job is to find and recycle empty cans
- At any given time, its battery charge is either high or low
- It can do three actions: search for cans, wait, or recharge
- Goal: Find cans efficiently without running out of battery charge

Questions:

- 1. Is this an instance of a supervised learning problem?
- 2. Is this an instance of a search problem?

Reinforcement Learning

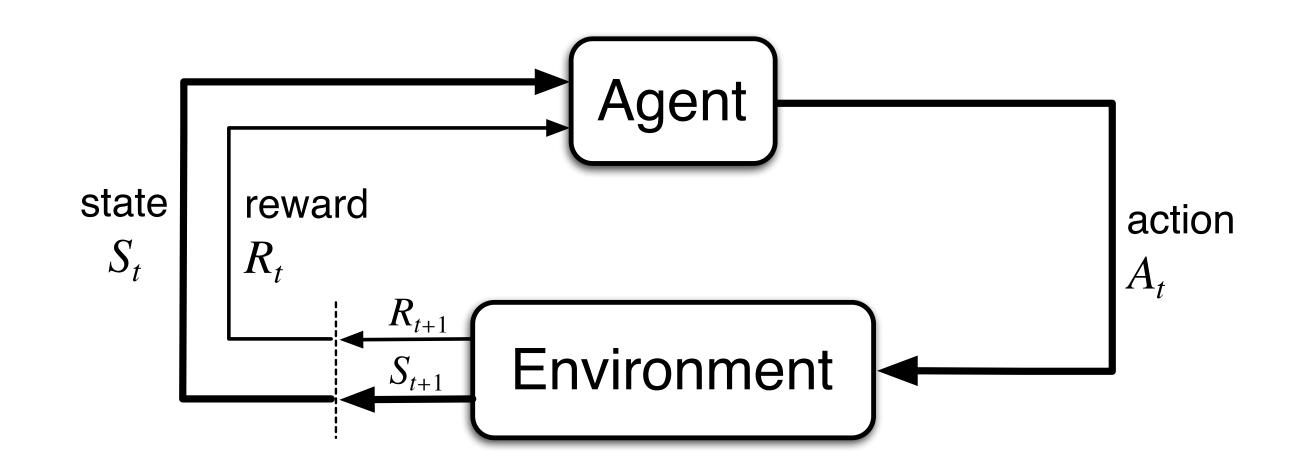
In a **reinforcement learning** task, an agent learns how to **act** based on feedback from the **environment**.

- The agent's actions may change the environment
- The "right answer" is not known
- The task may be either episodic or continuing
- The agent makes decisions **online**: determines how to act while interacting with the environment

Interacting with the Environment

At each time t = 1, 2, 3, ...

- 1. Agent receives input denoting current state S_t
- 2. Agent chooses action A_t
- 3. Next time step, agent receives reward R_{t+1} and new state S_{t+1} , chosen according to a distribution $p(s', r \mid s, a)$



This interaction between agent and environment produces a trajectory:

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$

Markov Decision Process

Definition:

A Markov decision process is a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, p)$, where

- S is a set of states,
- A is a set of actions,
- $\mathcal{R} \in \mathbb{R}$ is a set of rewards,
- $p(s', r \mid s, a) \in [0,1]$ defines the dynamics of the process, and
- the probabilities from p completely characterize the environment's dynamics

Dynamics

The four-argument dynamics function returns the probability of every state transition:

$$p(s', r | s, a) \doteq \Pr(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a)$$

It is often convenient to use **shorthand notation** rather than the full four-argument dynamics function:

$$p(s'|s,a) \doteq \Pr(S_t = s'|S_{t-1} = s, A_{t-1} = a) = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

$$r(s,a) \doteq \mathbb{E}[R_t|S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

$$r(s,a,s') \doteq \mathbb{E}[R_t|S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s',r|s,a)}{p(s'|s,a)}$$

CanBot as a Reinforcement Learning Agent

Question: How can we represent CanBot as a reinforcement learning agent?

• Need to define states, actions, rewards, and dynamics

					$1, r_{ t wait}$ $1-eta, -3$ $eta, r_{ t search}$
$\underline{\hspace{1cm}}^{S}$	a	s'	p(s' s,a)	r(s, a, s')	
high	search	high	α	$r_{ extsf{search}}$	wait
high	search	low	$1-\alpha$	$\mid r_{ extsf{search}} \mid$	
low	search	high	$1 - \beta$	-3	
low	search	low	β	$r_{ t search}$	1, 0 recharge
high	wait	high	1	$\mid r_{ exttt{wait}} \mid$	high low
high	wait	low	0	_	
low	wait	high	0	_	
low	wait	low	1	$\mid r_{ exttt{wait}} \mid$	
low	recharge	high	1	0	search
low	recharge	low	0	_	
					$\alpha, r_{\mathtt{search}}$ $1-\alpha, r_{\mathtt{search}}$ $1, r_{\mathtt{wait}}$

Reward Hypothesis

Definition: Reward hypothesis

An agent's goals and purposes can be entirely represented as the maximization of the expected value of the cumulative sum of a scalar signal.

Returns for Episodic Tasks

Question: What does it *mean* to maximize the expected value of the cumulative sum of rewards?

Definition: A task is **episodic** if it ends after some **finite number** T of time steps in a special **terminal state** S_T .

Definition: The **return** G_t after time t is the sum of rewards received after time t: $G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \ldots + R_{T}$

Answer: The return G_t is a random variable. In an episodic task, we want to maximize its **expected value** $\mathbb{E}[G_t]$.

Returns for Continuing Tasks

Definition: A task is **continuing** if it does not end (i.e., $T = \infty$).

- In a continuing task, we can't just maximize the sum of rewards (why?)
- Instead, we maximize the discounted return:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

$$= \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$\gamma \leq 1 \text{ is the discount factor}$$

• Returns are recursively related to each other:

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$
$$= R_{t+1} + \gamma G_{t+1}$$

Summary

- Supervised learning models are trained offline using labelled training examples, and then make predictions
- Reinforcement learning agents choose their actions online, and update their behaviour based on rewards from the environment
- We can formally represent reinforcement learning environments using Markov decision processes, for both episodic and continuing tasks
- Reinforcement learning agents maximize expected returns