INference In
Beliet Networks

CMPUT 366: Intelligent Systems

Assignment #1

* Assignment #1 is due Friday (Feb 4) at 11:59pm

e Submit via eclass: zipfile containing:

» All code (yours and provided utility code)

2D

- of problem set solutions

| ecture Outline

1. Recap

2. Factors

3. Variable Elimination

4. Efficiency

Recap: Belief Networks

Definition:
A belief network (or Bayesian network) consists of:

1. A directed acyclic graph, with each node labelled by a random variable
2. A domain for each random variable
3. A conditional probability table for each variable given its parents

* [he graph represents a specific factorization of the full joint distribution

 Semantics:
Every node is independent of its non-descendants, conditional on its parents

Recap: Queries

The most common task for a belief network is to query

posterior probabilities given some observations
<>
Easy cases:
* Posteriors of a single variable conditional only on

parents

e Joint distributions of variables early in a compatible
variable ordering

Typically, the observations have no straightforward @

relationship to the target

This lecture: mechanical procedure for computing
arbitrary queries Report

Factors

* [he Variable Elimination algorithm exploits the factorization of a joint probability
distribution encoded by a belief network in order to answer queries

» A factor is a function f(Xj, . . ., X;) from random variables to a real number

* Input: factors representing the conditional probability tables from the belief network

P(Leaving | Alarm)P(Smoke | Fire)P(Alarm | Tampering, Fire)P(Tampering)P(Fire)
becomes
fi(Leaving, Alarm)f,(Smoke, Fire)f;(Alarm, Tampering, Fire)f,(Tampering)fs(Fire)

 Output: A new factor encoding the target posterior distribution

=.9., f1o(Tampering).

Conditional Probabllities
as Factors

» A conditional probability P(Y | X;,...,X) is afactor f(Y, X, ..., X) that obeys the
constraint;

Vv, € dom(X,),v, € dom(Xy), ...,v, € dom(X,): | D) fO.vi....v)| =1
yedom(Y)

* Answer to a query is a factor constructed by applying operations to the input factors
e QOperations on factors are not guaranteed to maintain this constraint!
e Solution: Don't sweat it!
* QOperate on unnormalized probabilities during the computation

 Normalize at the end of the algorithm to re-impose the constraint

Conditioning

Conditioning is an operation on a single factor

» (Constructs a new factor that returns the values of the original factor with some of
its iInputs fixed

Definition:
For a factor (X4, . . ., X;), conditioning on X. = v; yields a new factor

E(Xl, "'Xi—l’X+1’ ’Xk) — (JCI)Xi:Vi

such that for all values vy, ..., V;_1, Vii 1, ..., Vi in the domain of Xy, ... X;_, X; 1, ..., X},

Vs eeis Vi s Vi s oo s Vi) = 1(Vps co s Vi1 Vis Vi s -+ o5 Vi),

Conditioning Example

fZ(A’ B) — fl(A’ B’ C)C=true

...

h h

5 A B value
F F 0.88
F T 045

...

Multiplication

Multiplication is an operation on two factors

e (Constructs a new factor that returns the product of the rows selected from each
factor by its arguments

Definition:

For two factors f; (X, .. ,X], Yi,....Y,)and h(Yy, ..., Y\, Zy, ..., Z)),

multiplication of f; and f, yields a new factor

(i %) =Xy X Vs o s Vi Zy, o, Z))

such that for all values xy, ..., Kis Y15 ++ 25 Yo 15 -+ 5 Zp

E(Xl, cees]’yl’ . .,yk, Zl’ 9Zf) :]Cl(xl, cees]’yl’ . 9Yk)f2(y19 ...,yk, Zl’ 9Zf)

Vlultiplication Example

KA, B, C) = fi(A, B) X f2(B, C)

/3
f f A B C évalue
A B évalue B C ivalue i i i 0.1
FF o F
F 0
F T | 0.05
T F F 03
e e -
______________________________________ e

...

_.
=
_
=

Summing Out

Summing out is an operation on a single factor

e (Constructs a new factor that returns the sum over all values of a random variable of the original
factor

Definition:
For a factor f1(X{, ..., X}), summing out a variable X: yields a new factor

Afé(Xl”Xl—l’Xl+1”Xk)= Zﬂ
X;

such that for all values vy, ..., V;_1, Vi11s ..., Vi in the domain of Xy, ... X;_1, X; 1, ..., X,

PV e s Vi s Vi s oo s Vi) = Z J1Vs oo Vil 15 Vis Vi 15« e o5 Vi)
v.Edom(X;)

Summing Out Example

/(B) =) fi(A,B)
A

Variable Elimination

Given observations Y| = vy, ..., ¥, = v, and query variable Q, we want
P(Q, Yl — Vl, ceeo Yk — Vk)

P(Q|Y1=V1,...,Yk=vk)= |
qudom(Q)P(Q — {q, Y] = Vi, “"Yk — Vk)

Basic idea of variable elimination:
1. Condition on observations by conditioning

Construct joint distribution factor by multiplication

2.
3. Remove unwanted variables (neither query nor observed) by summing out
4. Normalize at the end

Doing these steps in order is correct but not efficient

Efficiency comes from interleaving the order of operations

Sums of Products

The computationally intensive part of variable elimination is computing
sums of products

Example: multiply factors f,(Q, A, B, C), /,(C, D, E); sum out A, E
1. £(0,A,B,C,D,E) =£,(Q,A,B,C) X f»,(C, D, E) : 2° multiplications
2. £(0,B,C,D) = Z £(0,A,B,C,D,E) : 3 x 16 additions

AE

Total: 112 computations

(*) For all numerical examples,
we assume binary domains

Ffficient Sums of Products

We can reduce the number of computations required by changing their order.

D D £(Q.A,B,C) x f,(C.D,E)
A Lk

— (Zfl(Q,A,B, C)) X (Z]‘Q(C, D, E))
A E

1. f2(C,D) = X.f(C,D,E) : 2° additions
2. f1(0,B,C)=2,f(0,A,B,C) : 2° additions
3. f-(0,B,C,D) =£;(Q, B, C) X f,(B, C, D) : 2" multiplications

JTotal: 28 computations

Variable Elimination Algorithm

Input: query variable Q; set of variables Vs; observations O; factors Ps representing conditional probability tables

Fs := Ps
for each X in Vs\{Q} according to some elimination ordering:
Rs :={F € Fs | Finvolves X}
if X € O:
foreach I € Rs:
F’ := F conditioned on observed value of X
Fs:= (Fs\{F}) U {F')
else:
1T := product of factors in Rs
N := sum X outof T
Fs := (FS\RS) U {N}
T := product of factors in F's

N :=sum Q out of T
return 7/N (i.e., normalize T)

Variable Elimination Example:
Conditioning =

Query: P(Tampering | Smoke=true, Report=true)
Variable ordering: Smoke, Report, Fire, Alarm, Leaving

°(Tampering, Fire, Alarm, Smoke, Leaving, Report) =
P(Tampering)P(Fire)P(Alarm|Tampering, Fire) P(Smoke|Fire)P(Leaving|Alarm)P(Report|Leaving)

Construct factors for each table:
{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), f3(Smoke,Fire), fa(Leaving,Alarm), fs(Report,Leaving) }

Condition on Smoke: fs = (f3)smoke=true
{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), fe(Fire), fa(Leaving,Alarm), fs(Report,Leaving) }

COnditiOn Oon qepOr’[: f7 — (f5)Report:true
{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), fs(Fire), fa(Leaving,Alarm), f7(Leaving) }

Variable Elimination Example:

RRRRR

Elimination

Query: P(Tampering | Smoke=true, Report=true)
Variable ordering: Smoke,Report, Fire, Alarm, Leaving
{ fo(Tampering), f1(Fire), fo(Tampering,Alarm,Fire), fs(Fire), fa(Leaving,Alarm), fz(Leaving) }

Sum out Fire from product of f1,f2,fs: fs = > Fire (f1 X f2 X fé)
[fo(Tampering), fs(Tampering,Alarm), f4(Leaving,Alarm), fz(Leaving) }

Sum out Alarm from product of fs, f4: fo = > aam (fs X f4)
{ fo(Tampering), fo(Tampering,Leaving), f7(Leaving) }

Sum out Leaving from product of fo, f7: f10 = 3 Leaving (fo X f7)
{ fo(Tampering), fro(Tampering) }

Variable Elimination Example:
Normalization

RRRRR

Query: P(Tampering | Smoke=true, Report=true)
Variable ordering: SmokeReporttreAlarmteavhg
{ fo(Tampering), fio(Tampering) }

Product of remaining factors: f11 = fo X f1o
{ f11(Tampering) }

Normalize by division:
query(Tampering) = f11(Tampering) / (3 tampering f11(Tampering))

Optimizing Elimination Order

Variable elimination exploits efficient sums of products on a factored joint distribution

The elimination order of the variables affects the efficiency of the algorithm

-INnding an optimal elimination ordering iIs NP-hard
Heuristics (rules of thumb) for good orderings:
e Observations first: Condition on all of the observed variables first

 Min-factor: At every stage, select the variable that constructs the
smallest new factor

* Problem-specific heuristics

Optimization: Pruning

* [he structure of the graph can allow us to drop leaf nodes

 We can repeat this process:

that are neither observed nor queried

e Summing them out for free

Optimization: Preprocessing

-inally, It we know that we are always going to be observing and/or querying
the same variables, we can preprocess our graph; e.g.:

1. Precompute the joint distribution of all the variables we will observe
and/or query

2. Precompute conditional distributions for our exact queries

Summary

Variable elimination is an algorithm for answering queries based on a
belief network

Operates by using three operations on factors to reduce graph to a single
posterior distribution

1. Conditioning
2. Multiplication
3. Summing out

Distributes operations more efficiently than taking full product and then
summing out

 Optimal order of operations is NP-hard to compute

Additional optimization technigues: heuristic ordering, pruning, precomputation

