Linear Models

CMPUT 366: Intelligent Systems

P&M §7.3

Recap: Supervised Learning

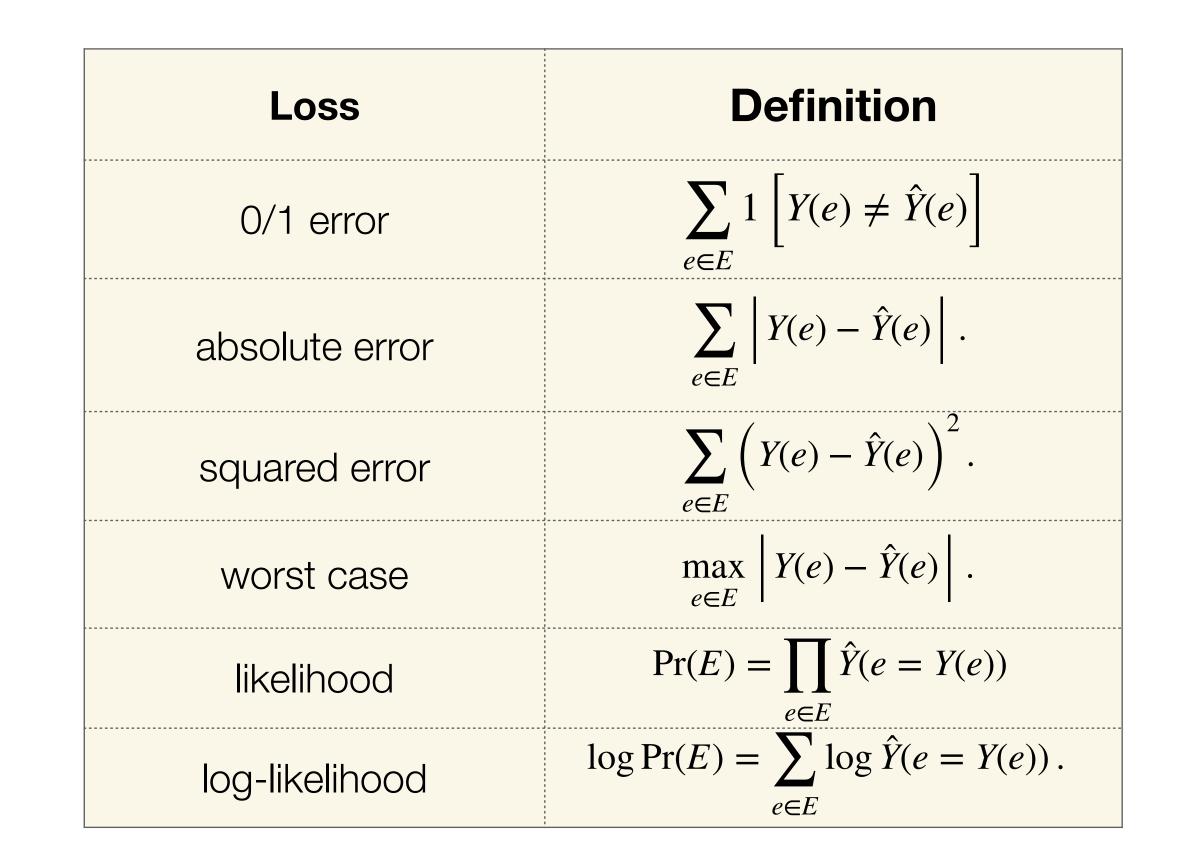
Definition: A supervised learning task consists of

- A set of input features X_1, \ldots, X_n
- A set of **target features** Y_1, \ldots, Y_k
- A set of training examples, for which both input and target features are given
- A set of **test examples**, for which only the input features are given

The goal is to predict the values of the target features given the input features; i.e., learn a function h(x) that will map features X to a prediction of Y

- We want to predict **new**, **unseen data** well; this is called **generalization**
- Can estimate generalization performance by reserving separate test examples

Recap: Loss Functions



• A loss function gives a quantitative measure of a hypothesis's performance

• There are many commonly-used loss functions, each with its own properties

Lecture Outline

- 1. Recap & Logistics
- 2. Trivial Predictors
- 3. Linear Decision Trees
- 4. Linear Regression

Trivial Predictors

- **same value** *v* for any example
- **Question:** Why would we every want to think about these? ullet

• The simplest possible predictor **ignores all input features** and just predicts the

Optimal Trivial Predictors for Binary Data

- Suppose we are predicting a binary target
- *n*₀ **negative** examples
- *n*₁ **positive** examples
- **Question:** What is the optimal single prediction?

Measure	Optimal Prediction		
0/1 error	0 if $n_0 > n_1$ else 1		
absolute error	0 if $n_0 > n_1$ else 1		
squared error	$\frac{n_1}{n_0 + n_1}$		
worst case	$\begin{cases} 0 & \text{if } n_1 = 0 \\ 1 & \text{if } n_0 = 0 \\ 0.5 & \text{otherwise} \end{cases}$		
likelihood	$\frac{n_1}{n_0 + n_1}$		
log-likelihood	$\frac{n_1}{n_0 + n_1}$		

Optimal Trivial Predictor Derivations

0/1 error 0 if $n_0 > n_1 \text{ else } 1$

log-likelihood	<u> </u>
ieg mænieea	$n_0 + n_1$

 $L(v) = vn_1 + (1 - v)n_0$

$$L(v) = n_1 \log v + n_0 \log(1 - v)$$
$$\frac{d}{dv}L(v) = 0$$
$$0 = \frac{n_1}{v} - \frac{n_0}{1 - v}$$

$$\frac{v}{1-v} = \frac{n_1}{v}$$

$$\frac{v}{1-v} = \frac{n_1}{v}$$

$$\frac{v}{1-v} = \frac{n_1}{n_0} \quad \land (0 < v < 1) \implies v = \frac{n_1}{n_0 + n_1}$$

Decision Trees

Decision trees are a simple approach to **classification**

Definition:

A decision tree is a tree in which

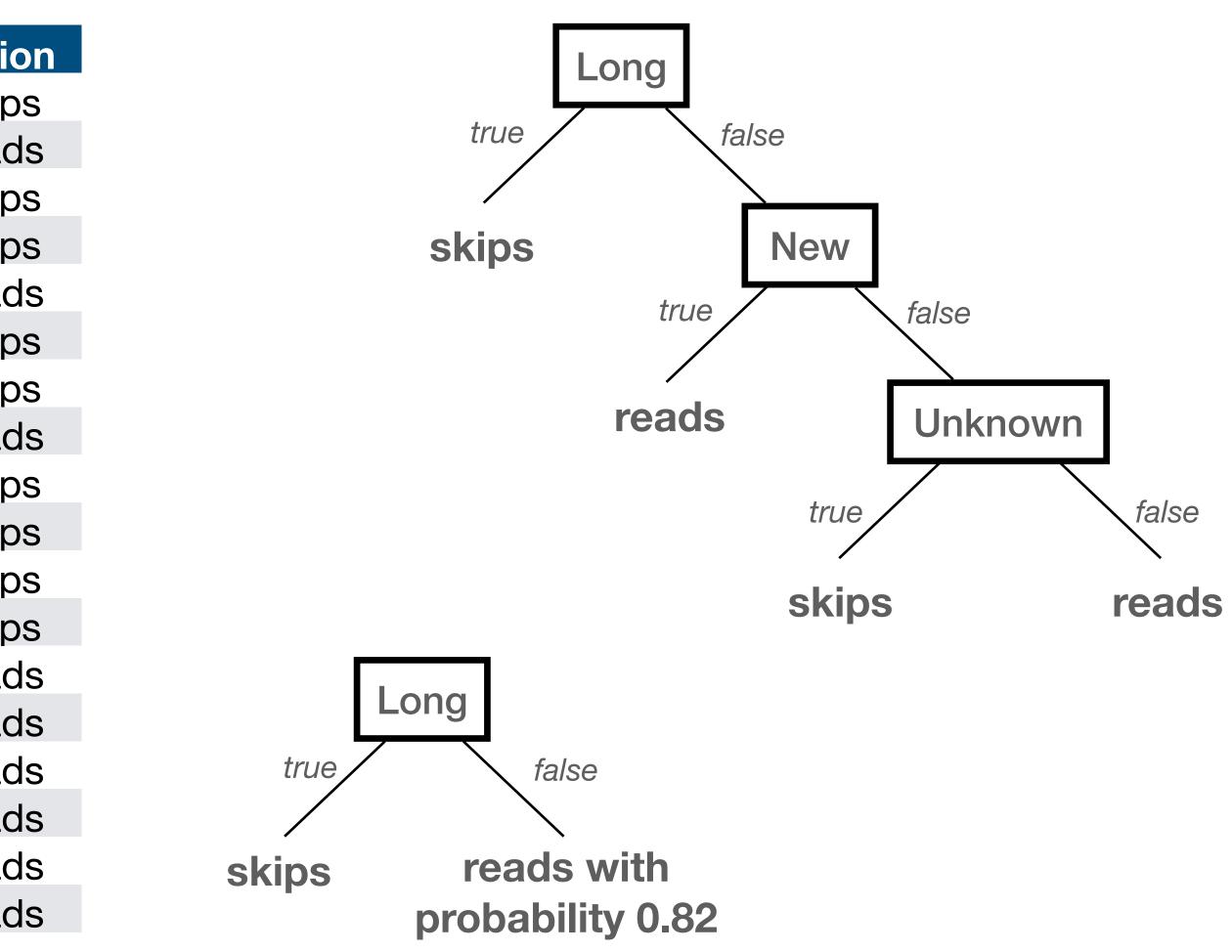
- Every internal node is labelled with a condition (Boolean function of an example)
- false

• Every internal node has two children, one labelled true and one labelled

• Every leaf node is labelled with a **point estimate** on the **target**

Decision Trees Example

Example	Author	Thread	Length	Where	Actio
e1	known	new	long	home	skip
e2	unknown	new	short	work	reac
e3	unknown	followup	long	work	skip
e4	known	followup	long	home	skip
e5	known	new	short	home	reac
e6	known	followup	long	work	skip
e7	unknown	followup	short	work	skip
e8	unknown	new	short	work	reac
e9	known	followup	long	home	skip
e10	known	new	long	work	skip
e11	unknown	followup	short	home	skip
e12	known	new	long	work	skip
e13	known	followup	short	home	reac
e14	known	new	short	work	reac
e15	known	new	short	home	reac
e16	known	followup	short	work	reac
e17	known	new	short	home	reac
e18	unknown	new	short	work	reac



Building Decision Trees

How should an agent **choose** a decision tree?

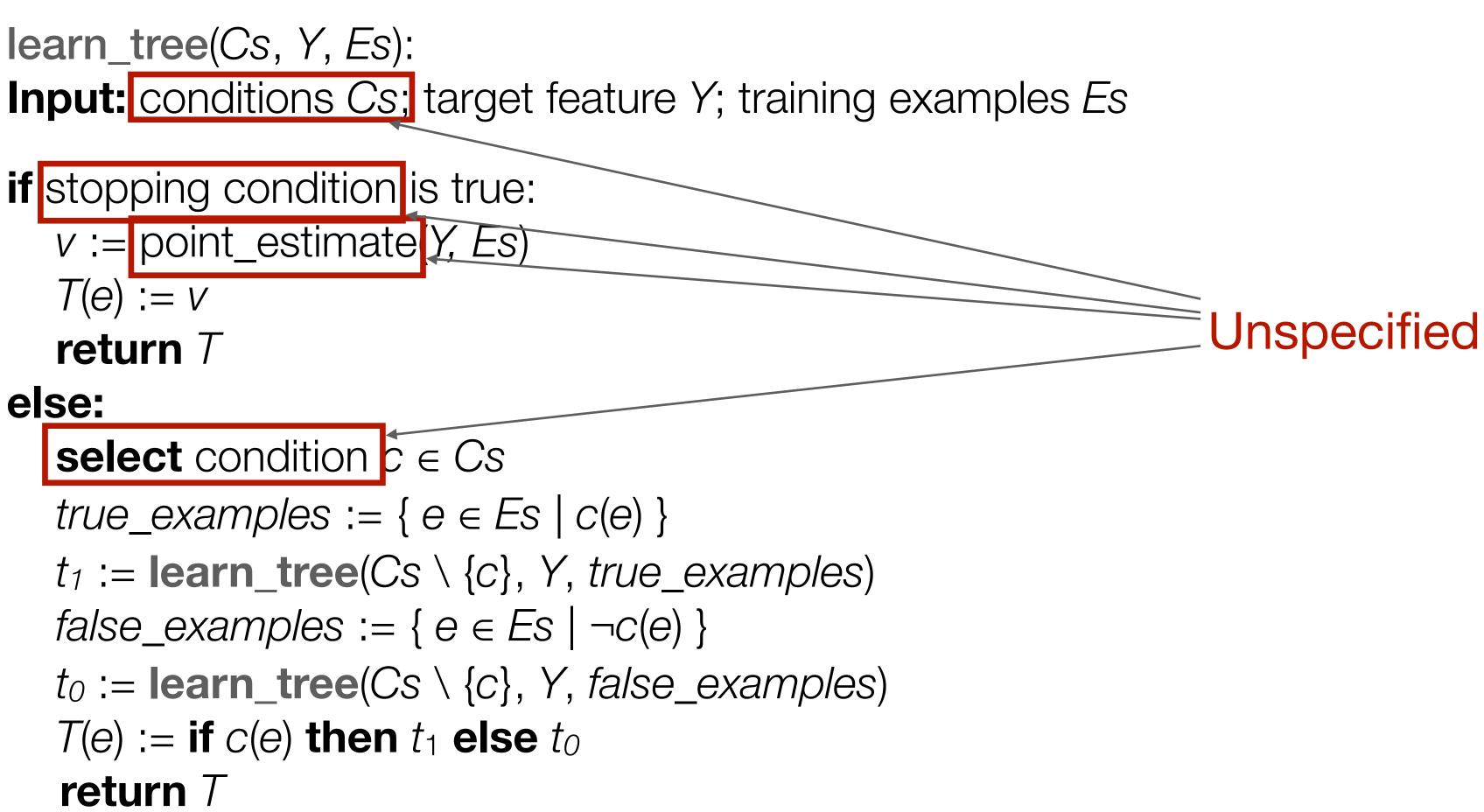
- **Bias:** which decision trees are preferable to others?
- **Search:** How can we search the space of decision trees?
 - Search space is **prohibitively large**
 - *Idea:* Choose **features** to branch on **one by one**

Tree Construction Algorithm

learn_tree(Cs, Y, Es): **Input:** conditions Cs; target feature Y; training examples Es

if stopping condition is true: $v := point_estimate(Y, Es)$ T(e) := vreturn T else: **select** condition $c \in Cs$ true_examples := { $e \in Es \mid c(e)$ } $t_1 := \text{learn_tree}(Cs \setminus \{c\}, Y, true_examples)$ false_examples := { $e \in Es \mid \neg c(e)$ } $t_0 := \text{learn_tree}(Cs \setminus \{c\}, Y, false_examples)$ T(e) :=**if** C(e) **then** $t_1(e)$ **else** $t_0(e)$ return T

Tree Construction Algorithm



Stopping Criterion

- **Question:** When **must** the algorithm stop?
 - No more **conditions**
 - No more **examples**
 - All examples have the same label lacksquare
- Additional possible criteria: \bullet
 - lacksquare(**why**?)
 - one of the children (**why**?)
 - sufficiently (**why**?)

Minimum number of examples: Do not split a node with too few examples

• Minimum child size: Do not split a node if there would be too few examples in

Improvement criteria: Do not split a node unless it improves some criterion

• Maximum depth: Do not split if the depth reaches a maximum (why?)

Leaf Point Estimates

- **Question:** What point estimate should go on the leaves?
 - Modal target value
 - Median target value (unless categorical)
 - Mean target value (unless categorical or ordinal)
 - **Distribution** over target values lacksquare

• **Question:** What point estimate optimally classifies the leaf's examples?

Split Conditions

- **Question:** What should the set of **conditions** be?
 - Boolean features can be used directly
 - **Partition** domain into subsets
 - E.g., thresholds for ordered features
 - One branch for each domain element

Choosing Split Conditions

- **Question:** Which condition should be chosen to split on?
- Standard answer: myopically optimal condition
 - If this was the **only** split, which condition would result in the best performance?

Linear Regression

- training examples
 - Both input and target features must be **numeric**
- Linear function of the input features:

$$\hat{Y}^{w}(e) = w_0 + w_1$$
$$= \sum_{i=0}^{n} w_i X_i$$

Linear regression is the problem of fitting a linear function to a set of

 $X_{1}(e) + ... + w_{n}X_{n}(e)$

(e)

Gradient Descent

- For some loss functions (e.g., sum of squares), linear regression has a closed-form solution
- For others, we use gradient descent
 - Gradient descent is an iterative method to find the minimum of a function.
 - For minimizing error:

$$w_i := w_i - i$$

 $\eta - error(E, w)$ ∂W_i

Gradient Descent Variations

• Incremental gradient descent: in turn

 $\forall e_j \in E : w_i := v$

 Batched gradient descent: upd examples

 $\forall E_j : w_i := w_i$

 Stochastic gradient descent: re to update on

Incremental gradient descent: update each weight after each example

$$w_i - \eta \frac{\partial}{\partial w_i} error(\{e_j\}, w)$$

Batched gradient descent: update each weight based on a batch of

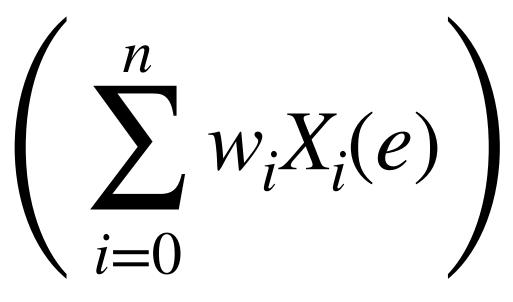
$$_{i} - \eta \frac{\partial}{\partial w_{i}} error(E_{j}, w)$$

Stochastic gradient descent: repeatedly choose example(s) at random

Linear Classification

- For binary targets represented by {0,1} and numeric input features, we can use linear function to estimate the probability of the class
- **Issue:** we need to constrain the output to lie within [0,1]
- Instead of outputting results of the function directly, send it through an activation function $f : \mathbb{R} \to [0,1]$ instead:

$$\hat{Y}^w(e) = f$$



• A very commonly used activation function is the **sigmoid** or **logistic** function:

sigmoid(.

• **logistic regression**

Logistic Regression

$$(x) = \frac{1}{1 + e^{-x}}$$

Linear classification with a logistic activation function is often referred to as

What if the target feature has k > 2 values?

- 1. Use *k* indicator variables
- 2. Learn each indicator variable **separately**
- 3. Normalize the predictions

Non-Binary Target Features

Linear Regression Trees

- Learning algorithms can be **combined**
- Example: Linear classification trees
 - Learn a decision tree until stopping criterion
 - If there are still features left in the leaf, learn a linear classifier on the remaining features
- Example: Linear regression trees
 - Learn a decision tree with linear regression in the leaves
 - Splitting criterion has to perform linear regression for each considered split

Summary

Decision trees:

- Split on a **condition** at each internal node
- Prediction on the **leaves**
- Simple, general; often a **building block** for other methods

Linear Regression and Classification: \bullet

- Fit a linear function to the input and target features
- Often trained by gradient descent
- For some loss functions, linear regression has a **closed analytic form**