Policies and Value Functions

CMPUT 366: Intelligent Systems

S&B §3.5

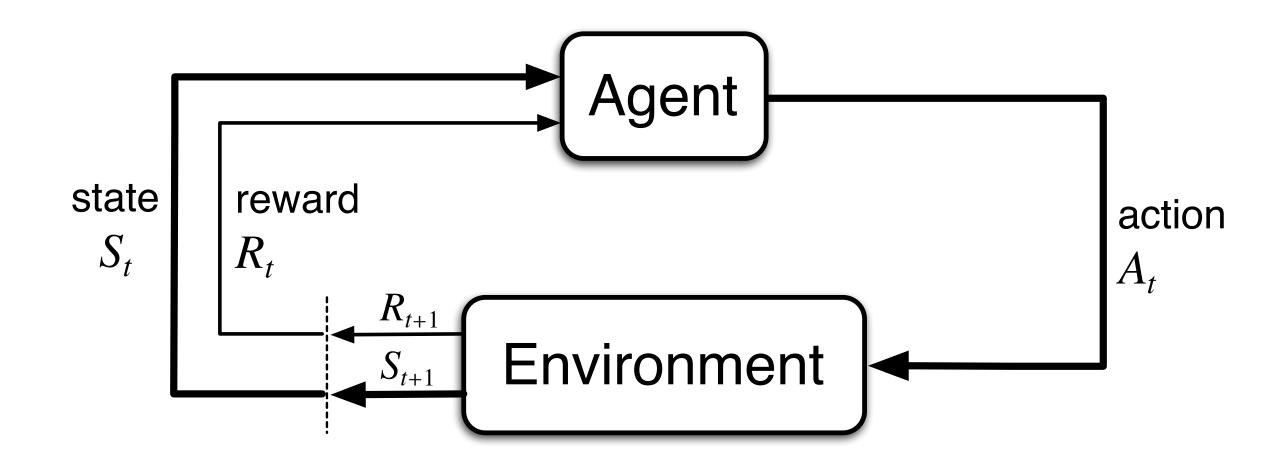
Lecture Outline

- 1. Recap
- 2. Policies & Value Functions
- 3. Bellman Equations

Recap: Interacting with the Environment

At each time t = 1, 2, 3, ...

- 1. Agent receives input denoting current state S_t
- 2. Agent chooses action A_t
- 3. Next time step, agent receives reward R_{t+1} and new state S_{t+1} , chosen according to a distribution $p(s', r \mid s, a)$



This interaction between agent and environment produces a trajectory:

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$

Recap: Episodic vs Continuing Returns

Definition: A task is **episodic** if it ends after some **finite number** T of time steps in a special **terminal state** S_T .

Definition: A task is continuing if it does not end (i.e., $T = \infty$).

Definition: The return G_t after time t is the sum of rewards received after time t:

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

• For episodic tasks, discount rate $\gamma = 1$. For continuing tasks, $\gamma < 1$.

Policies

Question: How should an agent in a Markov decision process choose its actions?

- Markov assumption: The state incorporates all of the necessary information about the history up until this point
 - i.e., Probabilities of future rewards & transitions are the same from state S_t regardless of how you got there
- So the agent can choose its actions based only on S_t
- This is called a (memoryless) policy: $\pi(a \mid s) \in [0,1]$ is the probability of taking action a given that the current state is s

State-Value Function

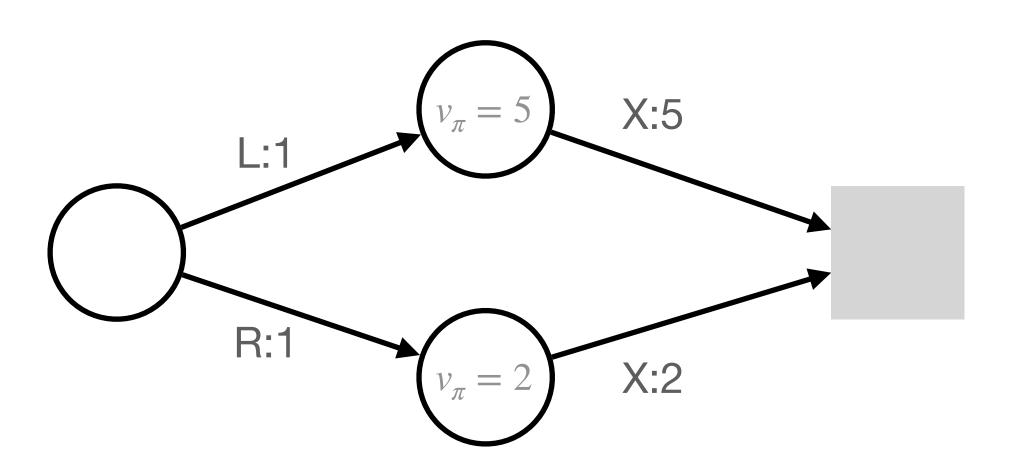
- Once you know the **policy** π and the **dynamics** p, you can compute the probability of every possible state transition starting from any given state
- It is often valuable to know the expected return starting from a given state s under a given policy π (why?)
- The state-value function v_{π} returns this quantity:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \quad \forall t$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right]$$

Using State-Value Function

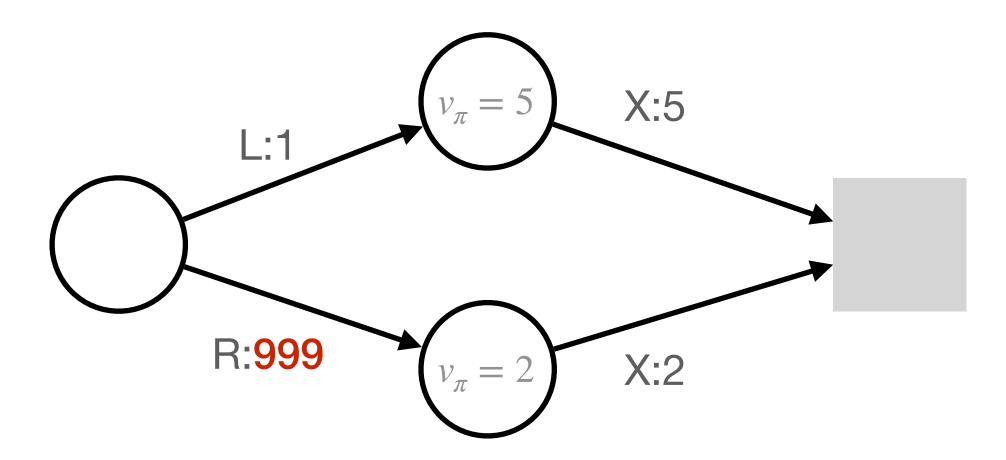
Question: Suppose state transitions are deterministic. Does it make sense to always choose the action that leads to the next state s' with the highest $v_{\pi}(s)$?



Using State-Value Function

Question: Suppose state transitions are deterministic. Does it make sense to always choose the action that leads to the next state s' with the highest $v_{\pi}(s)$?

Not always; the reward for the transition itself is also important!



Action-Value Function

The action-value function $q_{\pi}(s,a)$ estimates the expected return G_t starting from state s if we

- 1. Take action a in state $S_t = s$, and then
- 2. Follow policy π for every state S_{t+1} afterward

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$

Bellman Equations

Value functions satisfy a recursive consistency condition called the **Bellman equation**:

$$\begin{split} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \frac{\gamma G_{t+1} \mid S_{t} = s]}{\gamma G_{t+1} \mid S_{t} = s}] = \sum_{a} \sum_{s'} \sum_{r} \Pr[S_{t+1} = s', R_{t+1}r, A_{t} = a \mid S_{t} = s] [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']] \\ &= \sum_{a} \sum_{s'} \sum_{r} \Pr[S_{t+1} = s', R_{t+1} = r \mid A_{t} = a] \Pr[A_{t} = a \mid S_{t} = s] [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']] \\ &= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']] \\ &= \sum_{a} \pi(a \mid s) \sum_{s', r} p(s', r \mid s, a) [r + \gamma \nu_{\pi}(s')] \end{split}$$

- v_{π} is the **unique solution** to π 's Bellman equation
- There is also a Bellman equation for π 's action-value function

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \dots \right)$$

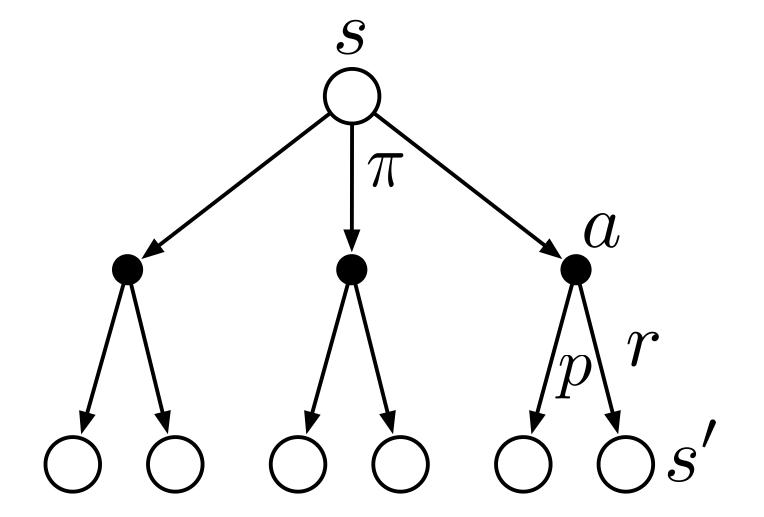
$$= R_{t+1} + \gamma G_{t+1}$$

Backup Diagrams

Backup diagrams help to visualize the flow of information back to a state from its successor states or action-state pairs:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

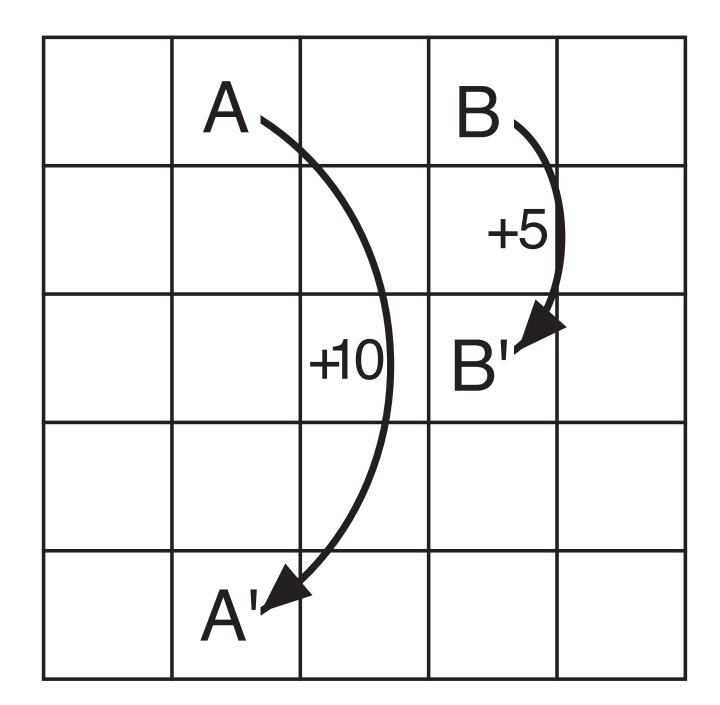
$$= \sum_{a} \pi(a | s) \sum_{s',r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$



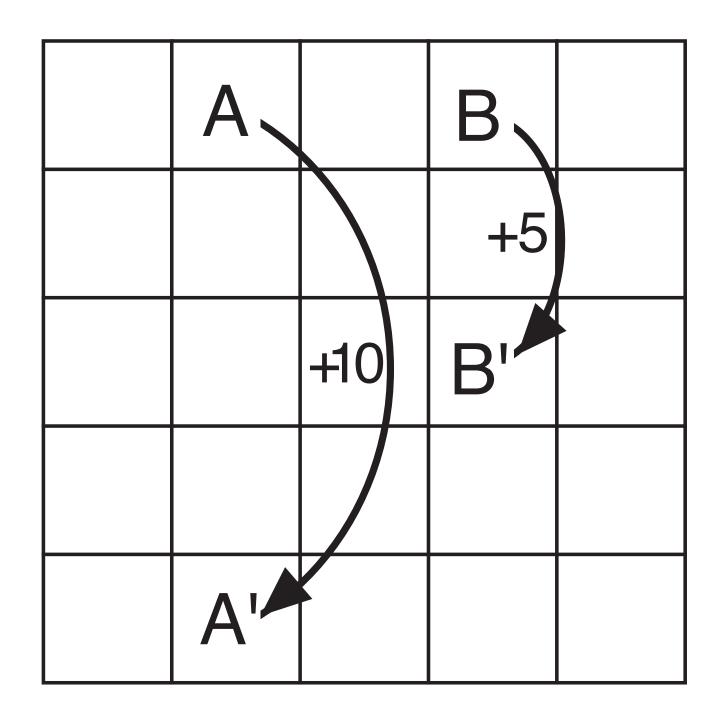
Backup diagram for v_{π}

Return to GridWorld

- At each cell, can go north, south, east, west
- Try to go off the edge: reward of -1
- Leaving state A: takes you to state A', reward of +10
- Leaving state B: takes you to state B', reward of +5



Return to GridWorld



Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy $\pi(a \mid s) = 0.25$

Summary

- Policies map states to (distribution over) actions
- Given a policy π , every state s has an expected value $v_{\pi}(s)$
 - and every action a from state s has value $q_{\pi}(s,a)$
 - These are the state-value and action-value functions
- State-value and action-value functions satisfy the Bellman equations