| 1 | Mon, Jan 11 | Introduction: What is AI? | P&M chapter 1 
 | 
    
      | 1 | Wed, Jan 13 | Introduction: Representational dimensions | P&M chapter 1 | 
    
      | 1 | Fri, Jan 15 | Search: Graph search | P&M §3.1–3.4 | 
    
      | 2 | Mon, Jan 18 | Search: Uninformed Search | P&M §3.5 
 | 
    
      | 2 | Wed, Jan 20 | Search: Uninformed Search II; Heuristic search | P&M §3.6 | 
    
      | 2 | Fri, Jan 22 | Search: Heuristic Search II | P&M §3.7–3.8 | 
    
      | 3 | Mon, Jan 25 | Search: Branch & Bound | P&M §3.7–3.8 Assignment 1 released
 | 
    
      | 3 | Wed, Jan 27 | Search: Local search | P&M §4.7 | 
    
      | 3 | Fri, Jan 29 | Uncertainty: Probability theory | P&M §8.1 | 
    
      | 4 | Mon, Feb 1 | Uncertainty: Conditional independence | P&M §8.2 | 
    
      | 4 | Wed, Feb 3 | Uncertainty: Belief networks | P&M §8.3 | 
    
      | 4 | Fri, Feb 5 | Uncertainty: Independence in belief networks | P&M §8.4 | 
    
      | 5 | Mon, Feb 8 | Uncertainty:  Inference in belief networks | P&M §8.4 Assignment 1 due
 | 
    
      | 5 | Wed, Feb 10 | Causality: Causal inference | Bar §3.4 | 
    
      | 5 | Fri, Feb 12 | Supervised learning: Intro | P&M §7.1–7.3 Assignment 2 released
 Add/Drop deadline
 | 
    
      |  | Mon, Feb 15 | Winter Reading Break, NO CLASS |  | 
    
      |  | Wed, Feb 17 | Winter Reading Break, NO CLASS |  | 
    
      |  | Fri, Feb 19 | Winter Reading Break, NO CLASS |  | 
    
      | 6 | Mon, Feb 22 | Supervised learning: Linear Models | P&M §7.1–7.3 | 
    
      | 6 | Wed, Feb 24 | Supervised learning: Overfitting | P&M §7.4 | 
    
      | 6 | Fri, Feb 26 | Supervised learning: Exact Bayesian models | P&M §10.4 | 
    
      | 7 | Mon, Mar 1 | Deep learning: Calculus refresher | GBC §4.1, 4.3 | 
    
      | 7 | Wed, Mar 3 | Deep learning: Neural networks | GBC §6.0–6.4.1 | 
    
      | 7 | Fri, Mar 5 | Deep learning: Training Neural Networks | GBC §6.5 Assignment 2 due
 | 
    
      | 8 | Mon, Mar 8 | Deep learning: Convolutional neural networks | GBC §9.0–9.4 | 
    
      | 8 | Wed, Mar 10 | Deep learning: Recurrent neural networks | GBC §10.0–10.2, 10.4, 10.10 Assignment 3 released
 | 
    
      | 8 | Fri, Mar 12 | Midterm review |  | 
    
      | 9 | Mon, Mar 15 | Midterm exam |  | 
    
      | 9 | Wed, Mar 17 | Reinforcement learning: Markov decision processes | S&B §3.0–3.4 | 
    
      | 9 | Fri, Mar 19 | Reinforcement learning: Policies and value functions | S&B §3.5 | 
    
      | 10 | Mon, Mar 22 | Reinforcement learning: Optimality and Dynamic Programming | S&B §3.6, §4.0–4.2 | 
    
      | 10 | Wed, Mar 24 | Reinforcement learning: Policy Iteration | S&B §4.3–4.4 | 
    
      | 10 | Fri, Mar 26 | Reinforcement learning: Monte Carlo Prediction | S&B§5.0–5.2 | 
    
      | 11 | Mon, Mar 29 | Reinforcement learning: Monte Carlo Control | S&B §5.3–5.5, §5.7 Assignment 3 due
 | 
    
      | 11 | Wed, Mar 31 | Reinforcement learning: Temporal difference learning | S&B §6.0–6.5 | 
    
      |  | Fri, Apr 2 | Good Friday, NO CLASS |  | 
    
      |  | Mon, Apr 5 | Easter Monday, NO CLASS |  | 
    
      | 12 | Wed, Apr 7 | Reinforcement learning: Function approximation | S&B §9.0–9.5.4 | 
    
      | 12 | Fri, Apr 9 | Reinforcement learning: Policy gradient | S&B §13.0–13.3 Assignment 4 released
 | 
    
      | 13 | Mon, Apr 12 | Multiagent systems: Game theory for single interactions
 | S&LB §3.0–3.3.2 | 
    
      | 13 | Wed, Apr 14 | Multiagent systems: Game theory for sequential interactions
 | S&LB§5.0–5.2.2 | 
    
      | 13 | Fri, Apr 16 | Final exam review |  | 
    
      |  | Mon, Apr 19 | Assignment 4 due |  | 
    
      |  | Wed, Apr 28 | Final exam | eClass |