CMPUT 366 (Winter 2021)

Intelligent Systems

Schedule

This schedule is subject to change as the semester progresses, but it will be kept up to date. Slides are linked from the lecture title. They will be made available on the day of the lecture.

wk Date Topic Readings & Milestones
1 Mon, Jan 11 Introduction: What is AI? P&M chapter 1
1 Wed, Jan 13 Introduction: Representational dimensions P&M chapter 1
1 Fri, Jan 15 Search: Graph search P&M §3.1–3.4
2 Mon, Jan 18 Search: Uninformed Search P&M §3.5
2 Wed, Jan 20 Search: Uninformed Search II; Heuristic search P&M §3.6
2 Fri, Jan 22 Search: Heuristic Search II P&M §3.7–3.8
3 Mon, Jan 25 Search: Branch & Bound P&M §3.7–3.8
Assignment 1 released
3 Wed, Jan 27 Search: Local search P&M §4.7
3 Fri, Jan 29 Uncertainty: Probability theory P&M §8.1
4 Mon, Feb 1 Uncertainty: Conditional independence P&M §8.2
4 Wed, Feb 3 Uncertainty: Belief networks P&M §8.3
4 Fri, Feb 5 Uncertainty: Independence in belief networks P&M §8.4
5 Mon, Feb 8 Uncertainty: Inference in belief networks P&M §8.4
Assignment 1 due
5 Wed, Feb 10 Causality: Causal inference Bar §3.4
5 Fri, Feb 12 Supervised learning: Intro P&M §7.1–7.3
Assignment 2 released
Add/Drop deadline
  Mon, Feb 15 Winter Reading Break, NO CLASS  
  Wed, Feb 17 Winter Reading Break, NO CLASS  
  Fri, Feb 19 Winter Reading Break, NO CLASS  
6 Mon, Feb 22 Supervised learning: Linear Models P&M §7.1–7.3
6 Wed, Feb 24 Supervised learning: Overfitting P&M §7.4
6 Fri, Feb 26 Supervised learning: Exact Bayesian models P&M §10.4
7 Mon, Mar 1 Deep learning: Calculus refresher GBC §4.1, 4.3
7 Wed, Mar 3 Deep learning: Neural networks GBC §6.0–6.4.1
7 Fri, Mar 5 Deep learning: Training Neural Networks GBC §6.5
Assignment 2 due
8 Mon, Mar 8 Deep learning: Convolutional neural networks GBC §9.0–9.4
8 Wed, Mar 10 Deep learning: Recurrent neural networks GBC §10.0–10.2, 10.4, 10.10
Assignment 3 released
8 Fri, Mar 12 Midterm review  
9 Mon, Mar 15 Midterm exam  
9 Wed, Mar 17 Reinforcement learning: Markov decision processes S&B §3.0–3.4
9 Fri, Mar 19 Reinforcement learning: Policies and value functions S&B §3.5
10 Mon, Mar 22 Reinforcement learning: Optimality and Dynamic Programming S&B §3.6, §4.0–4.2
10 Wed, Mar 24 Reinforcement learning: Policy Iteration S&B §4.3–4.4
10 Fri, Mar 26 Reinforcement learning: Monte Carlo Prediction S&B§5.0–5.2
11 Mon, Mar 29 Reinforcement learning: Monte Carlo Control S&B §5.3–5.5, §5.7
Assignment 3 due
11 Wed, Mar 31 Reinforcement learning: Temporal difference learning S&B §6.0–6.5
  Fri, Apr 2 Good Friday, NO CLASS  
  Mon, Apr 5 Easter Monday, NO CLASS  
12 Wed, Apr 7 Reinforcement learning: Function approximation S&B §9.0–9.5.4
12 Fri, Apr 9 Reinforcement learning: Policy gradient S&B §13.0–13.3
Assignment 4 released
13 Mon, Apr 12 Multiagent systems:
Game theory for single interactions
S&LB §3.0–3.3.2
13 Wed, Apr 14 Multiagent systems:
Game theory for sequential interactions
S&LB§5.0–5.2.2
13 Fri, Apr 16 Final exam review  
  Mon, Apr 19 Assignment 4 due  
  Wed, Apr 28 Final exam eClass