CMPUT 366 (Winter 2020)

Intelligent Systems

Schedule

This schedule is subject to change as the semester progresses, but it will be kept up to date. Slides are linked from the lecture title. They will be made available on the day of the lecture.

wk Date Topic Readings & Milestones
1 Mon, Jan 6 Introduction: What is AI? P&M chapter 1
NO LAB THIS WEEK
1 Wed, Jan 8 Introduction: Representational dimensions P&M chapter 1
1 Fri, Jan 10 Search: Graph search P&M §3.1–3.4
2 Mon, Jan 13 Search: Uninformed search P&M §3.5
NO LAB THIS WEEK
2 Wed, Jan 15 Search: Heuristic search P&M §3.6
2 Fri, Jan 17 Search: Heuristic Search II; Branch & bound P&M §3.7–3.8
Add/Drop deadline
3 Mon, Jan 20 Search: Local search P&M §4.7
Assignment 1 released
3 Wed, Jan 22 Uncertainty: Probability theory P&M §8.1
3 Fri, Jan 24 Uncertainty: Conditional independence P&M §8.2
4 Mon, Jan 27 Uncertainty: Belief networks P&M §8.3
4 Wed, Jan 29 Uncertainty: Independence in belief networks P&M §8.4
4 Fri, Jan 31 Uncertainty: Inference in belief networks P&M §8.4
5 Mon, Feb 3 Causality: Causal inference Bar §3.4
Assignment 1 due
5 Wed, Feb 5 Supervised learning: Intro P&M §7.1–7.2
5 Fri, Feb 7 Supervised learning: Linear models P&M §7.3
Assignment 2 released
6 Mon, Feb 10 Supervised learning: Overfitting P&M §7.4
6 Wed, Feb 12 Supervised learning: Exact Bayesian models P&M §10.4
6 Fri, Feb 14 Supervised learning: Monte Carlo estimation P&M §8.6
  Mon, Feb 17 Winter Reading Break, NO CLASS  
  Wed, Feb 19 Winter Reading Break, NO CLASS  
  Fri, Feb 21 Winter Reading Break, NO CLASS  
7 Mon, Feb 24 Deep learning: Calculus refresher GBC §4.1, 4.3
7 Wed, Feb 26 Deep learning: Neural networks GBC §6.0–6.4.1
7 Fri, Feb 28 Deep learning: Training Neural Networks GBC §6.5
Assignment 2 due
8 Mon, Mar 2 Deep learning: Convolutional neural networks GBC §9.0–9.4
8 Wed, Mar 4 Deep learning: Recurrent neural networks GBC §10.0–10.2, 10.4, 10.10
8 Fri, Mar 6 Midterm review Assignment 3 released
9 Mon, Mar 9 Midterm exam  
9 Wed, Mar 11 Reinforcement learning: Markov decision processes S&B §3.0–3.4
9 Fri, Mar 13 CLASS CANCELLED  
10 Mon, Mar 16 CLASS CANCELLED  
10 Wed, Mar 18 Reinforcement learning: Policies and value functions S&B §3.5
10 Fri, Mar 20 Reinforcement learning: Optimality and Policy Evaluation S&B §3.6, §4.0–4.2
11 Mon, Mar 23 Reinforcement learning: Policy Iteration and Monte Carlo Prediction S&B §4.3–4.4, §5.0–5.2
11 Wed, Mar 25 Reinforcement learning: Monte Carlo Control S&B §5.3–5.5, §5.7
11 Fri, Mar 27 Reinforcement learning: Temporal difference learning S&B §6.0–6.5
Assignment 3 due
12 Mon, Mar 30 Reinforcement learning: Function approximation S&B §9.0–9.5.4
12 Wed, Apr 1 Reinforcement learning: Policy gradient S&B §13.0–13.3
12 Fri, Apr 3 Multiagent systems:
Game theory for single interactions
S&LB §3.0–3.3.2
Assignment 4 released
13 Mon, Apr 6 Multiagent systems:
Game theory for sequential interactions
S&LB §5.0–5.2.2
13 Wed, Apr 8 Final exam review  
  Fri, Apr 10 NO CLASS Assignment 4 due
  TBD Final exam CSC B2 (usual location) eClass