CMPUT 366 (Winter 2019)

Intelligent Systems

s## Schedule

This schedule is subject to change as the semester progresses, but it will be kept up to date. Slides are linked from the lecture title. They will be made available on the day of the lecture.

wk Date Topic Readings & Milestones
1 Mon, Jan 7 Introduction: What is AI? P&M chapter 1
NO LAB THIS WEEK
1 Wed, Jan 9 Introduction: Representational dimensions P&M chapter 1
1 Fri, Jan 11 Search: Graph search P&M §3.1–3.4
2 Mon, Jan 14 Search: Uninformed search P&M §3.5
NO LAB THIS WEEK
2 Wed, Jan 16 Search: Heuristic search P&M §3.6
2 Fri, Jan 18 Search: Branch & bound P&M §3.7–3.8
Add/Drop deadline
3 Mon, Jan 21 Search: Local search P&M §4.7
Assignment 1 released
3 Wed, Jan 23 Uncertainty: Probability theory P&M §8.1
3 Fri, Jan 25 Uncertainty: Conditional independence P&M §8.2
4 Mon, Jan 28 Uncertainty: Belief networks P&M §8.3
4 Wed, Jan 30 Uncertainty: Inference in belief networks P&M §8.4
4 Fri, Feb 1 Uncertainty: Independence in belief networks & Causality: Intro P&M §8.4, Bar §3.4
5 Mon, Feb 4 Causality: Causal inference Bar §3.4
Assignment 1 due
5 Wed, Feb 6 Supervised learning: Intro P&M §7.1–7.2
5 Fri, Feb 8 Supervised learning: Linear models P&M §7.3
Assignment 2 released
6 Mon, Feb 11 Supervised learning: Overfitting P&M §7.4
6 Wed, Feb 13 Supervised learning: Exact Bayesian models P&M §10.4
6 Fri, Feb 15 Supervised learning: Monte Carlo estimation P&M §8.6
  Mon, Feb 18 Winter Reading Break, NO CLASS  
  Wed, Feb 20 Winter Reading Break, NO CLASS  
  Fri, Feb 22 Winter Reading Break, NO CLASS  
7 Mon, Feb 25 Deep learning: Calculus refresher GBC §4.1, 4.3
7 Wed, Feb 27 Deep learning: Neural networks GBC §6.0–6.4.1
7 Fri, Mar 1 Deep learning: Convolutional neural networks GBC §9.0–9.4
8 Mon, Mar 4 Deep learning: Recurrent neural networks GBC §10.0–10.2, 10.4, 10.10
Assignment 2 due
8 Wed, Mar 6 Deep learning: Autoencoders GBC §14.0–14.5
8 Fri, Mar 8 Midterm review Assignment 3 released
9 Mon, Mar 11 Midterm exam  
9 Wed, Mar 13 Reinforcement learning: Markov decision processes S&B §3.0–3.4
9 Fri, Mar 15 Reinforcement learning: Policies and value functions S&B §3.5
10 Mon, Mar 18 Reinforcement learning: Optimality and Policy Evaluation S&B §3.6, §4.0–4.2
10 Wed, Mar 20 Reinforcement learning: Policy Iteration and Monte Carlo Prediction S&B §4.3–4.4, §5.0–5.2
10 Fri, Mar 22 Reinforcement learning: Monte Carlo Control S&B §5.3–5.5, §5.7
11 Mon, Mar 25 Reinforcement learning: Temporal difference learning S&B §6.0–6.5
Assignment 3 due
11 Wed, Mar 27 Reinforcement learning: Function approximation S&B §9.0–9.5.4
11 Fri, Mar 29 Reinforcement learning: Policy gradient S&B §13.0–13.3
12 Mon, Apr 1 Multiagent systems:
Game theory for single interactions
S&LB §3.0–3.3.2
Assignment 4 released
12 Wed, Apr 3 Multiagent systems:
Game theory for sequential interactions
S&LB §5.0–5.2.2
12 Fri, Apr 5 Multiagent systems: Zero-sum games S&LB §3.4.1
13 Mon, Apr 8 Multiagent systems: Aggregating preferences S&LB §9.1–9.4, §10.1–10.3
13 Wed, Apr 10 Final exam review  
  Fri, Apr 12 NO CLASS Assignment 4 due
  Wed, Apr 24 Final exam CSC B2 (usual location)