Blas-Variance [ragdeoft

CMPUT 296: Basics of Machine Learning



| ogistics

 Midterm and assignment 2 marking are in progress

* Assignment #3 will be available today



Recap: Regularization

 Regularization: minimize the training cost plus a complexity penalty

e Cc(W) = %Z?zl cost(f(x;; W), y,)+ 4 penalty(w)
* Only make a model more complex if it improves loss "enough”

» The hyperparameter A controls our notion of "enough"

. L2 Regularization: penalty is sum of squared weights: penalty(w) = ;{21 wj2
e |2 regularized linear regression corresponds to MAP inference with independent

zero-mean Gaussian priors on each weight (except wy)

d

. L1 Regularization: Penalty is sum of absolute values: penalty(w) = ijl

» (Corresponds to MAP inference with independent Laplacian prior on weights

‘le

» Produces sparse solutions (many entries of w are set to exactly 0)



Outline

1. Recap & Logistics

2. Bias and Variance in Linear Regression / Parameter Estimation

3. Bias and Variance in General / Function Outputs



Blas, Variance, and krror

Suppose we are estimating a quantity ¢ using an estimator X

Bias(X) = E[X — u]

Var(®) = E | (X - ELX]Y|

Recall that an estimator's mean squared error decomposes into bias and
variance:

MSER) = E [(f( _ ,4)2] — Bias’(X) + Var(X)




VILE for Linear Regression

Recall the stochastic model for linear regression with Gaussian errors:

Y=w!X+e wheree~ (0,6

Now recall the MLE formulation of the linear regression problem:

n
WI\/lLE — darg min Z (yi — WTXZ-)2
=1

Question: \What quantity is being estimated?

MSEX) = E [(f( _ ,,t)2] — Bias2(X) + Var(®)

MSE(WI\/ILE) | [(WI\/ILE — 60)2] — BiaSZ(WMLE) + Var(wMLg)




VILE for Linear Regression: Blas

What is the bias of the MLE estimator? Let's consider the 1D case:

Recall:

1 ¢ I ¢

- Z XX | Wy p(D) = — Z XY,  where & is random
—> w (YD) = = 1 al for one-dimensional x

X Xi2
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VILE for Linear Regression: Variance

n WMLE(@) — 60)2

Var [WI\/ILE(QZ)]
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VILE for Linear Regression: Variance

()| = E




VILE for Linear Regression:
Blas vS. Variance

MSE(WML

Bias(wML

Var (Wl\/lL

) =E |(wyL

* Wp\| E IS unbiased

1

ol
2 X7

— w)*| = Bias*(w)_

 But the variance can be very large

o Especially when n is small

E) + Var(WM B




MAP for Linear Regression

Recall that the MAP formulation of the linear regression problem with a
Gaussian prior on the weights is equivalent to L2-regularized linear regression:

n n
WpAP = arg min 2 (v; = WTXZ-)2 + A Z Wi2

Again restricting to the 1D case, we can solve the MAP regression problem
analytically:

z;l:l XlYl

WaAp(D) = —=L * L
MAP(Z) Y%



MAP for Linear Regression: Blas

u [WMAD(QZ)] — IC




MAP for Linear Regression:
Blas vS. Variance

— [WMAD(@)] — W [L] ;é )

A+ X7
2 Xi
Var <WMAD) — 02 u —2
(/1 + ZiZIXZZ)

e W\AP IS biased downwards (why?)

X? is very small (why?)

. But Var (WI\/IA ) < even when Zl 1 X




Choosing 4

Total Error

Variance

Optimum Model Complexity

Error

s >
Model Complexity

» There exists an optimal A for which total generalization error is minimized

» Question: Can we find that A by directly optimizing generalization error?



Hypothesis Class Might Not
Contain the "Real” Function

* [he preceding treatment of linear regression assumes that there is a
true parameter w

e Suppose that instead the true model is quadratic:
Y=ay+a,X+aX*+e¢
but we are nevertheless performing linear regression

* Question: How can we apply the bias/variance argument?



Outputs vs Parameters

 We can perform a very similar analysis by comparing predictor outputs
iINnstead of predictor parameters

» Recall that error for a predictor f(X) decomposes into reducible and
Irreducible error:

MSE(fX0)) =[E | (/0 = £<00)” || 4{E | (7500 - ¥)’|

Reducible error lrreducible error

» We can treat the predictor itself as a random variable fg, and reason about
the expected value of the reducible error



Bias vs. Variance for Outputs

= | (00 —r0)°| = (

2
= [,00] = 400+ Var [f,00)

We can decompose the reducible error into bias and variance of the outputs

e (Very similar to our derivation for parameters)

Note that /*(X) is the optimal predictor; it need not be part of our hypothesis class

f5(X) is the predictor that will be chose
(so when we treat & as a random variab

N from ou

e, fg is a

" hypothesis class based on the dataset &

SO random)

Regularization changes how we choose f@ from a given hypothesis class

Choosing a different hypothesis class can change both the bias and variance of fg



Hypothesis Class Selection

= | (f00 = £50)°| = (E [f500) —f*(X))2 + Var [f5,(X0)]

* When the hypothesis class does not contain the true model, the

hypothesis class itself introduces bias (why?)

* [arger hypothesis classes will have smaller bias, but may also have higher
variance (why?)



Prior Knowledge

Balancing between bias and variance is a core problem in machine learning
We accomplish this by encoding prior knowledge in various ways:
* Choice of hypothesis class

* (Choice of regularization

* Prior distributions over parameters

Some prior knowledge is domain specific: e.q., prior distribution over parameters
based on data that we've already seen; knowledge of physical processes that
suggests a given family of functions

Some prior knowledge is not: e.q., preferring small sets of features or small weights



Summary

—Xpected generalization error can be decomposed into bias and variance

e Using a biased estimator can be better than an unbiased one if it sufficiently
reduces variance

Worked example: linear regression
 MLE estimator is unbiased but can have high variance
« MAP estimator is biased but has a controllable maximum variance

This same principle applies to the choice of hypothesis class

e Bigger hypothesis class can be less biased, but higher variance

In all cases, exploiting prior knowledge Is the key to controlling bias vs. variance



