Bias-Variance Tradeoff

CMPUT 296: Basics of Machine Learning

Textbook §9.2-9.3

Logistics

- Midterm and assignment 2 marking are in progress
- Assignment #3 will be available today

Recap: Regularization

- **Regularization:** minimize the training cost plus a complexity penalty
 - $c(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{cost}(f(\mathbf{x}_i; \mathbf{w}), y_i) + \lambda \operatorname{penalty}(\mathbf{w})$
 - Only make a model more complex if it improves loss "enough"
 - The hyperparameter λ controls our notion of "enough"
- L2 Regularization: penalty is sum of squared weights: penalty(\mathbf{w}) = $\sum_{j=1}^{d} w_j^2$
 - L2 regularized linear regression corresponds to MAP inference with independent zero-mean Gaussian priors on each weight (except w_0)
- L1 Regularization: Penalty is sum of absolute values: penalty(\mathbf{w}) = $\sum_{j=1}^{d} |w_j|$
 - Corresponds to MAP inference with independent Laplacian prior on weights
 - Produces sparse solutions (many entries of w are set to exactly 0)

Outline

- Recap & Logistics 1.
- Bias and Variance in Linear Regression / Parameter Estimation 2.
- 3. Bias and Variance in General / Function Outputs

Bias, Variance, and Error

Suppose we are estimating a quantity μ using an estimator \hat{X} .

variance:

$$MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mu)^2\right] = \text{Bias}^2(\hat{X}) + \text{Var}(\hat{X})$$

- $\operatorname{Bias}(\hat{X}) = \mathbb{E}[\hat{X} \mu]$
- $\operatorname{Var}(\hat{X}) = \mathbb{E}\left[(\hat{X} \mathbb{E}[\hat{X}])^2\right]$
- Recall that an estimator's mean squared error decomposes into bias and

MLE for Linear Regression

Recall the **stochastic model** for linear regression with Gaussian errors:

$$Y = \omega^T \mathbf{X} + \epsilon$$

Now recall the MLE formulation of the linear regression problem:

$$\mathbf{w}_{\mathsf{MLE}} = \arg\min_{\mathbf{w}\in\mathbb{R}^{d+1}}\sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Question: What quantity is being estimated?

$$MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mu)^2\right] = \text{Bias}^2(\hat{X}) + \text{Var}(\hat{X})$$
$$\mathbf{W}_{\text{MLE}} = \mathbb{E}\left[(\mathbf{W}_{\text{MLE}} - \omega)^2\right] = \text{Bias}^2(\mathbf{W}_{\text{MLE}}) + \text{Var}(\mathbf{W}_{\text{MLE}})$$

$$MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mu)^2\right] = \text{Bias}^2(\hat{X}) + \text{Var}(\hat{X})$$
$$MSE(\mathbf{w}_{\text{MLE}}) = \mathbb{E}\left[(\mathbf{w}_{\text{MLE}} - \boldsymbol{\omega})^2\right] = \text{Bias}^2(\mathbf{w}_{\text{MLE}}) + \text{Var}(\mathbf{w}_{\text{MLE}})$$

where $\epsilon \sim \mathcal{N}(0,\sigma^2)$

MLE for Linear Regression: Bias

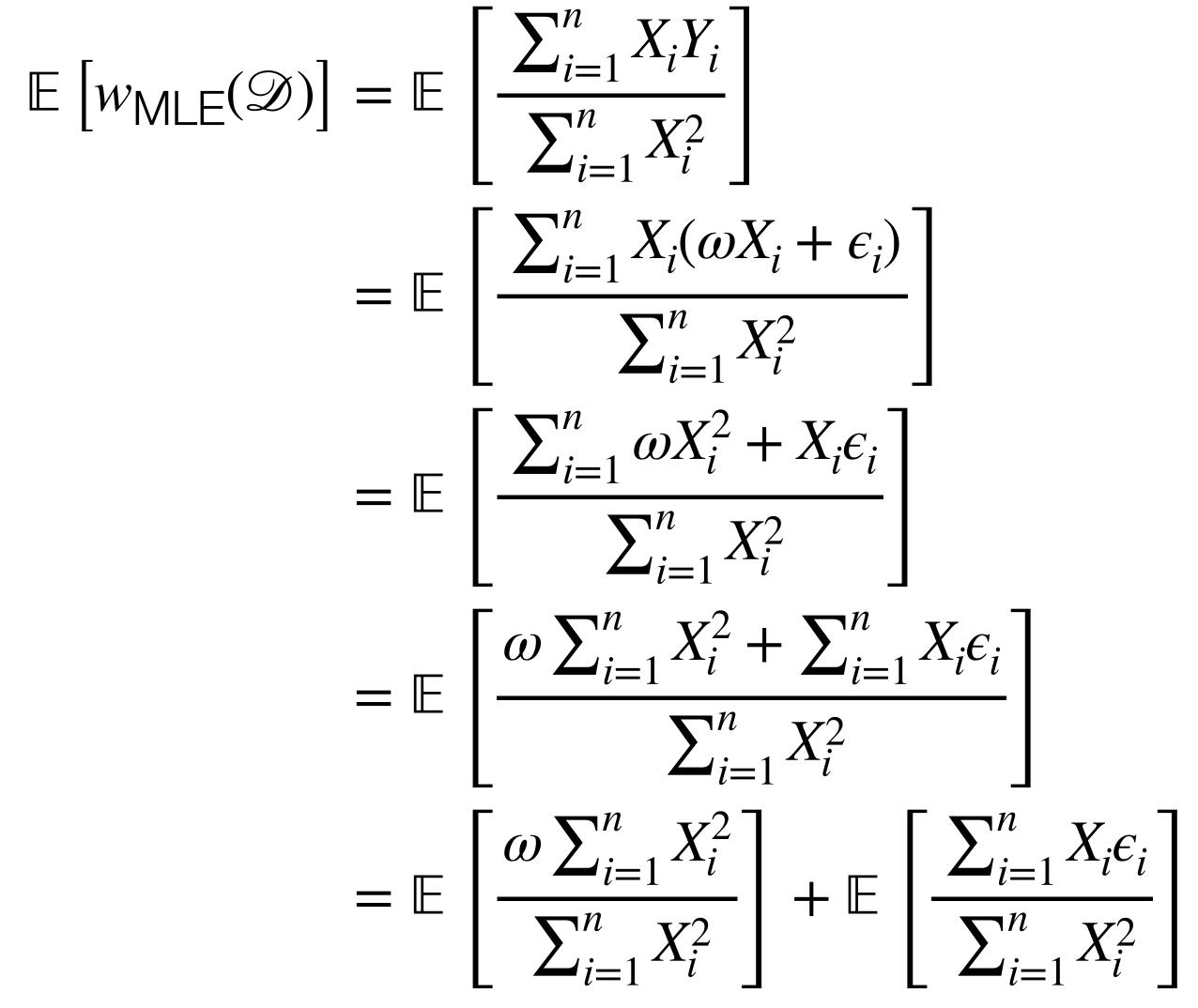
What is the bias of the MLE estimator? Let's consider the 1D case: Recall:

$$\left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{T} \right) \mathbf{w}_{\mathsf{MLE}}(\mathscr{D})$$

$$\implies w_{\mathsf{MLE}}(\mathscr{D}) = \frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}}$$

for one-dimensional x

Bias of WMIF $= \mathbb{E}[\omega] + \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_i \epsilon_i}{\sum_{i=1}^{n} X_i^2}\right]$ $= \mathbb{E}[\omega] + \sum_{i=1}^{n} \mathbb{E}\left[\frac{X_i \epsilon_i}{\sum_{i=1}^{n} X_i^2}\right]$ $= \mathbb{E}[\omega] + \sum_{i=1}^{n} \mathbb{E} \left[\epsilon_{i} \frac{X_{i}}{\sum_{i=1}^{n} X_{i}^{2}} \right]$ $= \mathbb{E}[\omega] + \sum_{i=1}^{n} \mathbb{E}[\epsilon_i] \mathbb{E}\left[\frac{X_i}{\sum_{i=1}^{n} X_i^2}\right]$ $= \mathbb{E}[\omega]$ $\epsilon_i \overset{i.i.d.}{\sim} \mathcal{N}(0,\sigma^2)$



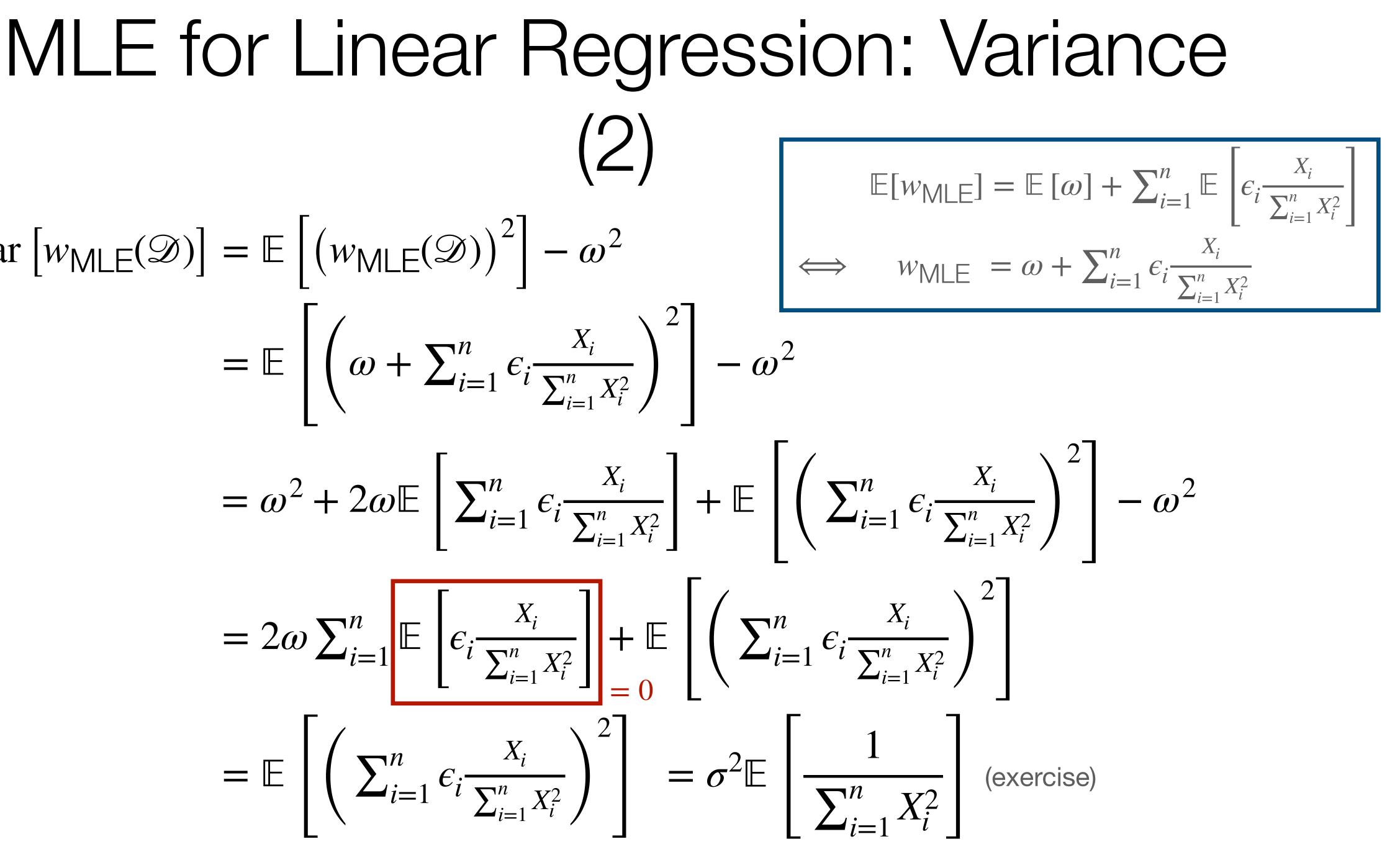
MLE for Linear Regression: Variance $\operatorname{Var}\left[w_{\mathsf{MLE}}(\mathscr{D})\right] = \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D}) - \omega\right)^{2}\right]$ $= \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D})\right)^2 - \right]$ $= \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D})\right)^{2}\right] = \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D})\right)^{2}\right] = \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D})\right)^{2}\right] - 2\omega\omega + \omega^{2}$ $= \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D})\right)^{2}\right] - \omega^{2}$

$$2\omega w_{\mathsf{MLE}}(\mathcal{D}) - \omega^2$$

$$- \mathbb{E}\left[2\omega w_{\mathsf{MLE}}(\mathcal{D})\right] + \mathbb{E}\left[\omega^{2}\right]$$

$$-2\omega\mathbb{E}\left[w_{\mathsf{MLE}}(\mathscr{D})\right]+\omega^{2}$$

$$\operatorname{Var}\left[w_{\mathsf{MLE}}(\mathscr{D})\right] = \mathbb{E}\left[\left(w_{\mathsf{MLE}}(\mathscr{D})\right)^{2}\right] - \mathbb{E}\left[\left(\omega + \sum_{i=1}^{n} \epsilon_{i} - \sum_{i=1}^{n} \epsilon_{i}\right)^{2}\right] - \mathbb{E}\left[\left(\sum_{i=1}^{n} \epsilon_{i} - \sum_{i=1}^{n} \epsilon_{i}\right)^{2}\right$$



MLE for Linear Regression: Bias vs. Variance

 $MSE(\mathbf{w}_{MLE}) = \mathbb{E}\left[(\mathbf{w}_{MLE} - \boldsymbol{\omega})^2\right] = Bias^2(\mathbf{w}_{MLE}) + Var(\mathbf{w}_{MLE})$ $Bias(w_{NALF}) = 0$ $\operatorname{Var}(w_{\mathsf{MLE}}) = \sigma^2 \mathbb{E} \left[\frac{1}{\sum_{i=1}^n X_i^2} \right]$

- w_{MIF} is unbiased
- But the variance can be very large
 - Especially when *n* is small

MAP for Linear Regression

Recall that the MAP formulation of the linear regression problem with a Gaussian prior on the weights is equivalent to L2-regularized linear regression:

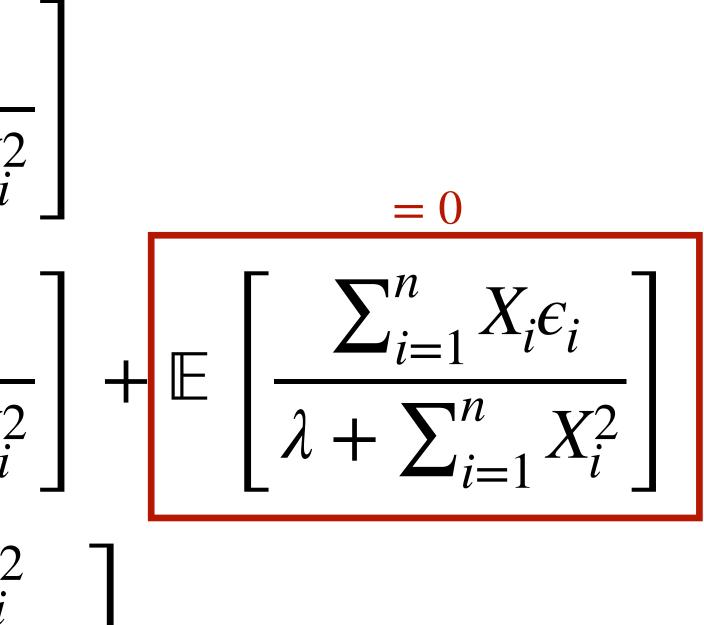
$$\mathbf{w}_{\mathsf{MAP}} = \arg\min_{\mathbf{w}\in\mathbb{R}^{d+1}}\sum_{i=1}^{n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \sum_{i=1}^{n} w_i^2$$

Again restricting to the 1D case, we can solve the MAP regression problem analytically:

$$) = \frac{\sum_{i=1}^{n} X_i Y_i}{\lambda + \sum_{i=1}^{n} X_i^2}$$

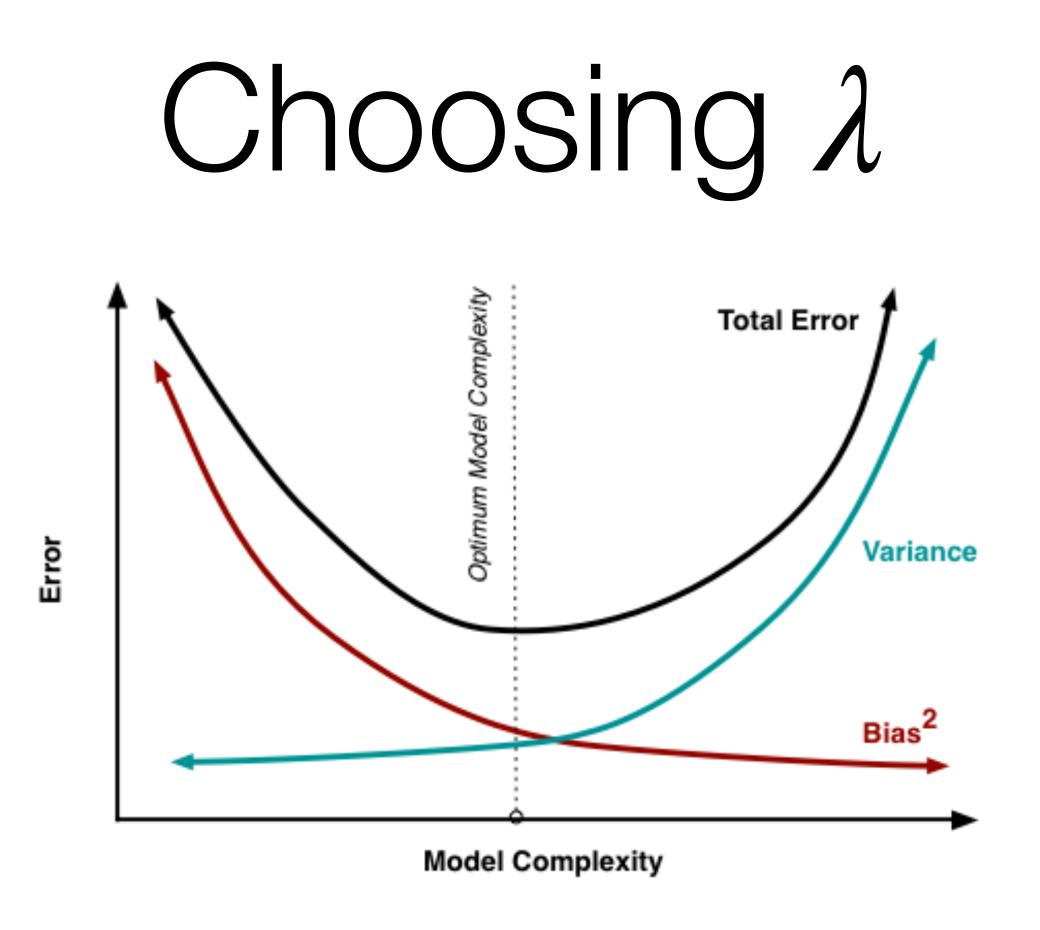
MAP for Linear Regression: Bias $\mathbb{E}\left[w_{\mathsf{MAP}}(\mathscr{D})\right] = \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_{i}Y_{i}}{\lambda + \sum_{i=1}^{n} X_{i}^{2}}\right]$ $= \mathbb{E}\left[\frac{\omega \sum_{i=1}^{n} X_{i}^{2}}{\lambda + \sum_{i=1}^{n} X_{i}^{2}}\right] + \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_{i}\epsilon_{i}}{\lambda + \sum_{i=1}^{n} X_{i}^{2}}\right]$ $= \omega \mathbb{E} \left[\frac{\sum_{i=1}^{n} X_{i}^{2}}{\lambda + \sum_{i=1}^{n} X_{i}^{2}} \right]$

 $\neq \omega$



MAP for Linear Regression: Bias vs. Variance $\mathbb{E}\left[w_{\mathsf{MLE}}\right] = \omega$ $\operatorname{Var}(w_{\mathsf{MLE}}) = \sigma^{2} \mathbb{E}\left[\frac{1}{\sum_{i=1}^{n} X_{i}^{2}}\right]$ $\mathbb{E}\left[w_{\mathsf{MAP}}(\mathscr{D})\right] = \omega \mathbb{E}\left[\frac{\sum_{i=1}^{n} X_{i}^{2}}{\lambda + \sum_{i=1}^{n} X_{i}^{2}}\right] \neq \omega$ $\operatorname{Var}\left(w_{\mathsf{MAP}}\right) = \sigma^{2} \mathbb{E} \left| \frac{\sum_{i=1}^{n} X_{i}^{2}}{\left(\lambda + \sum_{i=1}^{n} X_{i}^{2}\right)^{2}} \right|$ • *W*MAP is biased downwards (**why?**)

- But $\operatorname{Var}(w_{\mathsf{MAP}}) < \frac{1}{\lambda}$ even when $\sum_{i=1}^{n} X_i^2$ is very small (**why?**)



• There exists an optimal λ for which total generalization error is minimized

• Question: Can we find that λ by directly optimizing generalization error?

(Image: http://scott.fortmann-roe.com/docs/BiasVariance.html)

Hypothesis Class Might Not Contain the "Real" Function

- The preceding treatment of linear regression assumes that there is a true parameter ω
- Suppose that instead the true model is **quadratic**:

$$Y = \alpha_0 + \alpha_1 X + \alpha_2 X^2 + \epsilon$$

but we are nevertheless performing linear regression

Question: How can we apply the bias/variance argument? \bullet

Outputs vs Parameters

- instead of predictor **parameters**
- Recall that error for a predictor f(X) decomposes into reducible and irreducible error:

$$MSE(f(X)) = \mathbb{E}\left[\left(f(X) - f^*(X)\right)^2\right] + \mathbb{E}\left[\left(f^*(X) - Y\right)^2\right]$$

Reducible error Irreducible error

the expected value of the reducible error

• We can perform a very similar analysis by comparing predictor outputs

• We can treat the predictor itself as a random variable f_{OA} and reason about

Bias vs. Variance for Outputs $\mathbb{E}\left|\left(f_{\mathcal{D}}(X) - f^*(X)\right)^2\right| = \left(\mathbb{E}_{\mathcal{D}}(X) - f^*(X)\right)^2$

- We can decompose the reducible error into bias and variance of the outputs • (Very similar to our derivation for parameters)
- Note that $f^*(X)$ is the optimal predictor; it need not be part of our hypothesis class
- $f_{\mathcal{D}}(X)$ is the predictor that will be chosen from our hypothesis class based on the dataset \mathscr{D} (so when we treat \mathscr{D} as a random variable, $f_{\mathscr{D}}$ is also random)
- Regularization changes how we choose $f_{\mathcal{D}}$ from a given hypothesis class ullet
- Choosing a different hypothesis class can change both the bias and variance of $f_{\mathcal{D}}$ \bullet

$$\mathbb{E}\left[f_{\mathscr{D}}(X)\right] - f^{*}(X)\right)^{2} + \operatorname{Var}\left[f_{\mathscr{D}}(X)\right]$$

Hypothesis Class Selection

$$\mathbb{E}\left[\left(f_{\mathcal{D}}(X) - f^{*}(X)\right)^{2}\right] = \left(\mathbb{E}\left[f_{\mathcal{D}}(X)\right] - f^{*}(X)\right)^{2} + \operatorname{Var}\left[f_{\mathcal{D}}(X)\right]$$

- When the hypothesis class does not contain the true model, the hypothesis class itself introduces bias (why?)
 - variance (**why?**)

• Larger hypothesis classes will have smaller bias, but may also have higher

Prior Knowledge

\bullet

- We accomplish this by encoding **prior knowledge** in various ways: ullet
 - Choice of hypothesis class
 - Choice of regularization
 - Prior distributions over parameters
- suggests a given family of functions

Balancing between bias and variance is a core problem in machine learning

• Some prior knowledge is **domain specific**: e.g., prior distribution over parameters based on data that we've already seen; knowledge of physical processes that

Some prior knowledge is **not**: e.g., preferring small sets of features or small weights

Summary

- Expected generalization error can be decomposed into bias and variance lacksquare
 - Using a biased estimator can be better than an unbiased one if it sufficiently ulletreduces variance
- Worked example: **linear regression** lacksquare
 - MLE estimator is unbiased but can have high variance
 - **MAP estimator** is **biased** but has a **controllable maximum variance** \bullet
- This same principle applies to the choice of hypothesis class lacksquare
 - Bigger hypothesis class can be less biased, but higher variance
- In all cases, exploiting prior knowledge is the key to controlling bias vs. variance \bullet