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Logistics

• Midterm and assignment 2 marking are in progress 

• Assignment #3 will be available today



Recap: Regularization
• Regularization: minimize the training cost plus a complexity penalty 

•  

• Only make a model more complex if it improves loss "enough" 
• The hyperparameter  controls our notion of "enough" 

• L2 Regularization: penalty is sum of squared weights:  

• L2 regularized linear regression corresponds to MAP inference with independent 
zero-mean Gaussian priors on each weight (except ) 

• L1 Regularization: Penalty is sum of absolute values:  

• Corresponds to MAP inference with independent Laplacian prior on weights 
• Produces sparse solutions (many entries of  are set to exactly 0)

c(w) = 1
n ∑n

i=1 cost( f(xi; w), yi)+λ penalty(w)

λ

penalty(w) = ∑d
j=1 w2

j

w0

penalty(w) = ∑d
j=1 |wj |

w
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Bias, Variance, and Error

Suppose we are estimating a quantity  using an estimator . 

 

 

Recall that an estimator's mean squared error decomposes into bias and 
variance: 

 

μ X̂

Bias(X̂) = 𝔼[X̂ − μ]

Var(X̂) = 𝔼 [(X̂ − 𝔼[X̂])2]

MSE(X̂) = 𝔼 [(X̂ − μ)2] = Bias2(X̂) + Var(X̂)



MLE for Linear Regression
Recall the stochastic model for linear regression with Gaussian errors: 

       where   

Now recall the MLE formulation of the linear regression problem: 

  

Question: What quantity is being estimated? 

  

 

Y = ωTX + ϵ ϵ ∼ 𝒩(0,σ2)

wMLE = arg min
w∈ℝd+1

n

∑
i=1

(yi − wTxi)2

MSE(X̂) = 𝔼 [(X̂ − μ)2] = Bias2(X̂) + Var(X̂)

MSE(wMLE) = 𝔼 [(wMLE − ω)2] = Bias2(wMLE) + Var(wMLE)



MLE for Linear Regression: Bias

What is the bias of the MLE estimator?  Let's consider the 1D case: 

Recall:  

       where  is random 

                               for one-dimensional 

( 1
n

n

∑
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XiXT
i ) wMLE(𝒟) =

1
n

n

∑
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XiYi 𝒟

⟹ wMLE(𝒟) =
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i=1 XiYi

∑n
i=1 X2

i
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Bias of wMLE
 

 

 

 

𝔼 [wMLE(𝒟)] = 𝔼 [
∑n

i=1 XiYi

∑n
i=1 X2

i ]
= 𝔼 [
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= 𝔼 [ω] + 𝔼 [
∑n

i=1 Xiϵi

∑n
i=1 X2

i ]
= 𝔼 [ω] +

n

∑
i=1

𝔼 [ Xiϵi

∑n
i=1 X2

i ]
= 𝔼 [ω] +

n

∑
i=1

𝔼 [ϵi
Xi

∑n
i=1 X2

i ]
= 𝔼 [ω] +

n

∑
i=1

𝔼[ϵi]𝔼 [ Xi

∑n
i=1 X2

i ]
= 𝔼[ω] ∎

ϵi
i.i.d.∼ 𝒩(0,σ2)



MLE for Linear Regression: Variance
 

 

 

 

 

Var [wMLE(𝒟)] = 𝔼 [(wMLE(𝒟) − ω)2]
= 𝔼 [(wMLE(𝒟))2 − 2ωwMLE(𝒟) − ω2]
= 𝔼 [(wMLE(𝒟))2] − 𝔼 [2ωwMLE(𝒟)] + 𝔼 [ω2]
= 𝔼 [(wMLE(𝒟))2] − 2ω𝔼 [wMLE(𝒟)] + ω2

= 𝔼 [(wMLE(𝒟))2] − 2ωω + ω2

= 𝔼 [(wMLE(𝒟))2] − ω2



MLE for Linear Regression: Variance 
(2)

 

 

 

 

Var [wMLE(𝒟)] = 𝔼 [(wMLE(𝒟))2] − ω2

= 𝔼 [(ω + ∑n
i=1 ϵi

Xi

∑n
i=1 X2

i )
2

] − ω2

= ω2 + 2ω𝔼 [∑n
i=1 ϵi
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∑n
i=1 X2

i ] + 𝔼 [(∑n
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∑n
i=1 X2

i )
2

] − ω2

= 2ω∑n
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Xi

∑n
i=1 X2

i ] + 𝔼 [(∑n
i=1 ϵi

Xi

∑n
i=1 X2

i )
2

]
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Xi

∑n
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2
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𝔼[wMLE] = 𝔼 [ω] + ∑n
i=1 𝔼 [ϵi

Xi

∑n
i=1 X2

i ]
⟺ wMLE = ω + ∑n

i=1 ϵi
Xi

∑n
i=1 X2

i

= 0

= σ2𝔼 [ 1
∑n

i=1 X2
i ] (exercise)



MLE for Linear Regression: 
Bias vs. Variance

 

 

•  is unbiased 

• But the variance can be very large 

• Especially when  is small

MSE(wMLE) = 𝔼 [(wMLE − ω)2] = Bias2(wMLE) + Var(wMLE)

Bias(wMLE) = 0

Var(wMLE) = σ2𝔼 [ 1
∑n

i=1 X2
i ]

wMLE

n



MAP for Linear Regression
Recall that the MAP formulation of the linear regression problem with a 
Gaussian prior on the weights is equivalent to L2-regularized linear regression: 

  

Again restricting to the 1D case, we can solve the MAP regression problem 
analytically: 

 

wMAP = arg min
w∈ℝd+1

n

∑
i=1

(yi − wTxi)2 + λ
n

∑
i=1

w2
i

wMAP(𝒟) =
∑n

i=1 XiYi

λ+∑n
i=1 X2

i



MAP for Linear Regression: Bias

 

 

 

𝔼 [wMAP(𝒟)] = 𝔼 [
∑n

i=1 XiYi

λ + ∑n
i=1 X2

i ]
= 𝔼 [

ω∑n
i=1 X2

i

λ + ∑n
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i ] + 𝔼 [
∑n

i=1 Xiϵi

λ + ∑n
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∑n
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i

λ + ∑n
i=1 X2

i ]
≠ ω
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MAP for Linear Regression: 
Bias vs. Variance

 

 

•  is biased downwards (why?) 

• But  even when  is very small (why?)

𝔼 [wMAP(𝒟)] = ω𝔼 [
∑n

i=1 X2
i

λ + ∑n
i=1 X2

i ] ≠ ω

Var (wMAP) = σ2𝔼
∑n

i=1 X2
i

(λ + ∑n
i=1 X2

i )
2

wMAP

Var (wMAP) < 1
λ

∑n
i=1 X2

i

𝔼 [wMLE] = ω

Var(wMLE) = σ2𝔼 [ 1
∑n

i=1 X2
i ]



Choosing λ

• There exists an optimal  for which total generalization error is minimized 

• Question: Can we find that  by directly optimizing generalization error?

λ

λ

(Image: http://scott.fortmann-roe.com/docs/BiasVariance.html)



Hypothesis Class Might Not 
Contain the "Real" Function

• The preceding treatment of linear regression assumes that there is a 
true parameter  

• Suppose that instead the true model is quadratic: 

  

    but we are nevertheless performing linear regression 

• Question: How can we apply the bias/variance argument?

ω

Y = α0 + α1X + α2X2 + ϵ



Outputs vs Parameters
• We can perform a very similar analysis by comparing predictor outputs 

instead of predictor parameters 

• Recall that error for a predictor  decomposes into reducible and 
irreducible error: 

  

• We can treat the predictor itself as a random variable  and reason about 
the expected value of the reducible error

f(X)

MSE( f(X)) = 𝔼 [(f(X) − f*(X))2] + 𝔼 [(f*(X) − Y)2]

f𝒟

Reducible error Irreducible error



Bias vs. Variance for Outputs
  

• We can decompose the reducible error into bias and variance of the outputs 

• (Very similar to our derivation for parameters) 

• Note that  is the optimal predictor; it need not be part of our hypothesis class 

•  is the predictor that will be chosen from our hypothesis class based on the dataset   
(so when we treat  as a random variable,  is also random) 

• Regularization changes how we choose  from a given hypothesis class  

• Choosing a different hypothesis class can change both the bias and variance of 

𝔼 [(f𝒟(X) − f*(X))2] = (𝔼 [f𝒟(X)] − f*(X))
2

+ Var [f𝒟(X)]

f*(X)

f𝒟(X) 𝒟
𝒟 f𝒟

f𝒟

f𝒟



Hypothesis Class Selection

  

• When the hypothesis class does not contain the true model, the 
hypothesis class itself introduces bias (why?) 

• Larger hypothesis classes will have smaller bias, but may also have higher 
variance (why?)

𝔼 [(f𝒟(X) − f*(X))2] = (𝔼 [f𝒟(X)] − f*(X))
2

+ Var [f𝒟(X)]



Prior Knowledge
• Balancing between bias and variance is a core problem in machine learning 

• We accomplish this by encoding prior knowledge in various ways: 

• Choice of hypothesis class 

• Choice of regularization 

• Prior distributions over parameters 

• Some prior knowledge is domain specific: e.g., prior distribution over parameters 
based on data that we've already seen; knowledge of physical processes that 
suggests a given family of functions 

• Some prior knowledge is not: e.g., preferring small sets of features or small weights



Summary
• Expected generalization error can be decomposed into bias and variance 

• Using a biased estimator can be better than an unbiased one if it sufficiently 
reduces variance 

• Worked example: linear regression  

• MLE estimator is unbiased but can have high variance 

• MAP estimator is biased but has a controllable maximum variance 

• This same principle applies to the choice of hypothesis class 

• Bigger hypothesis class can be less biased, but higher variance 

• In all cases, exploiting prior knowledge is the key to controlling bias vs. variance


