Generalization Error & Overfitting

Textbook §8.1-8.2

CMPUT 296: Basics of Machine Learning

Logistics

- Thought Questions #2 will be marked today
 - TQ#2 superthread in the discussion forum
- Quiz will be marked by the end of the week
- Assignment #2 is due next Thursday (Oct 22)

A linear predictor has the form $f(\mathbf{x}) =$

- **Linear regression** is the process of finding a vector **w** of weights that minimizes the expected ulletcost of the prediction
- This can be solved **analytically** by solving a system of linear equations
 - But this can be very expensive for large $d: O(nd^2 + d^3)$
- More common solved numerically by first-order gradient descent \bullet
 - But this can also be very expensive for large n: O(ndk) for k iterations ullet
 - We can get around this using **stochastic gradient descent**
- Linear regression can be straightforwardly extended to **nonlinear regression**
 - Just do linear regression on a bunch of nonlinear features

Recap: Solving Linear Regression

$$w_0 + w_1 x_1 + \dots + w_d x_d = \sum_{j=0}^d w_j x_j = \mathbf{w}^T \mathbf{x}$$

Outline

- 1. Recap & Logistics
- 2. Overfitting
- 3. Estimating Generalization Error

Comparing Models

- Consistency tells us about the behavior of a particular estimator in the limit of infinite data
- In the context of parametric learning, the estimate is the model
 - i.e., the "true parameter" vectory ω is the unknown quantity being estimated
 - The MLE estimator W_{MLE} is a random variable, because it is a function of the dataset ${\mathscr D}$ (assumed to be an i.i.d. sample)
 - The actual estimate w_{MLE} is what we compute for a single realization of \mathscr{D}

Question: Given two specific models f_1 and f_2 computed from a **finite dataset** \mathcal{D} , is it even possible to tell which one is "better"?

Comparing Models: Polynomial Fits

Question: Which model is better?

Generalization Error

Question: What do we mean by one model being better than another?

Definition: Generalization error is a synonym for the expected cost:

$$\mathbb{E}[C] = \int_{\mathcal{X} \times \mathcal{Y}} p(x)$$

Question: How can we minimize generalization error?

Definition: Empirical error is the cost realized on the training data:

$$\hat{C} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{cost} \left(f(\mathbf{x}_i), y_i \right)$$

 (\mathbf{x}, y) cost $(f(\mathbf{x}), y) d\mathbf{x} dy$

Comparison Using Empirical Error

Question: Can we use empirical error to compare models?

Overfitting

empirical error (possibly 0), but extremely poor generalization error.

Questions:

- 1. Can you guess which of p = 1, p = 2, or p = 5 will have lowest even are?
- Gaussian noise?
- 3. we avoid overfitting?

Definition: Overfitting occurs when we select a model that has very good

empirical error on my next crazy dataset, before I tell you what the data

2. What if I tell you that the data were generated using a quadratic with

If we cannot estimate generalization error using empirical error, how can

Estimating Generalization Error

- Turns out we can estimate generalization error using empirical error
- Empirical error on an i.i.d. dataset is an unbiased estimator of generalization error
- But the i.i.d. dataset *must not* be the same dataset that we used to train the model in the first place (why?)
- Instead, we hold out some of our dataset
 - The non-held-out data (the training set) is used to train the model
 - The held-out data (the test set) is used to estimate generalization error

Detecting Overfitting

Question:

If the **training error** (the empirical error on the training set) is smaller than the **test error** (empirical error on the test set), does that indicate that we are overfitting?

Question: At what point does this hypothetical regression start to overfit?

Underfitting

- Overfitting is the result of using an overly complex model (on too little data)
- Question: Can we guarantee good generalization performance by always using a very simple model?
- **Underfitting** is the result of using an **overly simple model** \bullet

• We need our model to be *complex enough* to capture the underlying process, but simple enough that it doesn't also learn noise from our training data

Drawbacks of Held-Out Data

Using a held-out test set has two main disadvantages:

1. We want to use as much of our data for training as possible

• Every datapoint that we hold out for estimating generalization error is a datapoint that we can't train out model with

2. We can only use a held-out test set once

- If you choose your hyperparameters (e.g., p for polynomial regression) using a test set, then you have effectively used it for training
- If you use a dataset to choose your model, then generalization error estimates based on that dataset will inevitably be optimistic

Alternative: k-fold Cross-Validation

k-fold cross-validation

- Randomly partition \mathscr{D} into equal-sized
- For all $1 \leq j \leq k$, train a model $f^{(j)}$ usi 2.
- For all $1 \leq j \leq k$, compute empirical er З.
- Estimated generalization error is mean: 4.
- **Every** datapoint gets used for testing **once** ullet
- Extreme version: k = n (aka **leave-one-out** cross-validation) ullet

disjoint subsets
$$\mathscr{D}^{(1)}, ..., \mathscr{D}^{(k)}$$

ng $\mathscr{D} \setminus \mathscr{D}^{(j)}$
rror $\hat{C}^{(j)}$ of model $f^{(j)}$ on $\mathscr{D}^{(j)}$
 $\frac{1}{k} \sum_{j=1}^{k} \hat{C}^{(j)}$

Often used on the training set to choose hyperparameters (e.g., p for polynomial regression) • Since it's used on the training set, can use a separate held-out set to evaluate the final model

Alternative: Bootstrap Resampling

- \bullet
- So to create a test/training split, sample from the dataset itself! lacksquare

Bootstrap resampling

- For $1 \leq j \leq k$, sample *n* datapoints with replacement from \mathscr{D} ; call this $\mathscr{D}^{(j)}$
- For all $1 \leq j \leq k$, train a model $f^{(j)}$ on $\mathcal{D}^{(j)}$
- For all $1 \leq j \leq k$, compute empirical error $\hat{C}^{(j)}$ of model $f^{(j)}$ on $\mathscr{D} \setminus \mathscr{D}^{(j)}$ 3.
- Estimated generalization error is mean: $\frac{1}{k} \sum_{k} \hat{C}^{(j)}$ 4.
- ullet

Bootstrapping assumes that the data is a reasonable model of the underlying (true) distribution

• As with k-fold cross-validation, this can be used on the training set for selecting hyperparameters **Question:** How does this (or k-fold cross-validation) address the "only use test set once" issue?

Summary

- Our goal is to minimize **generalization error**: expected cost with respect to the underlying distribution
- But we only have access to **empirical error**: average cost on a dataset The empirical error of a model on its training data is a biased, over-optimistic ullet
- estimate of generalization error
- Using an overly complex model leads to overfitting: High training performance at the expense of generalization performance • **Underfitting** comes from using an **overly simple** model
- A held-out test set gives an unbiased estimate of generalization error
 - But you can only use it **once**!
 - Alternatives: k-fold cross-validation; bootstrap resampling