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Notation Reference

Set notation

X A generic set of values. For example, X = {0, 1} is the set containing only 0 and 1,
X = [0, 1] is the interval from 0 to 1 and X = R is the set of real numbers. Depending on
occasion, symbols such as A, B, Ω, and others will also be used as sets.

P(X ) The power set of X , a set containing all possible subsets of X .

[a, b] Closed interval with a < b, including both a and b.

(a, b) Open interval with a < b, with neither a nor b in the set.

(a, b] Open-closed interval with a < b, including b but not a.

[a, b) Closed-open interval with a < b, including a but not b.

Vector and matrix notation
x Unbold lowercase variables are generally scalars. However, when x ∈ X , where X is
not specified, x may imdicate a vector, a structured object such as graph, etc.

x Bold lowercase variables are vectors. By default, vectors are column vectors.

X Bold uppercase variables are matrices. This looks like a multivariate random variable,
X, but the random variable is italicized. It will often be clear from context when this is a
multivariate random variable and when it is a matrix.

X> The transpose of the matrix. For two matrices A and B, it holds that

(AB)> = B>A>.

An n× d matrix consisting of n vectors each of dimension d can be expressed as

X = [x1 x2 . . . xn]> .

Xi: The i-th row of the matrix. A row vector.

X:j The j-th column of the matrix. A column vector.

3



Tuples, vectors, and sequences

(x1, x2, . . . , xd) A tuple; i.e., an ordered list of d elements. When (x1, x2, . . . , xd) ∈ Rd,
the tuple will be treated as a column vector x = [x1 x2 . . . xd]>.

a1, . . . , am A sequence of m items. Index variables over these sequences are usually the
variables i, j, or k. For example,

∑m
i=1 ai or, if each ai is a vector of dimension d, then the

double index
∑m
i=1

∑d
j=1 aij .

Function notation
f : X → Y The function is defined on domain X to co-domain Y, taking values x ∈ X
and sending them to f(x) ∈ Y.

df
dx(x) The derivative of a function at x ∈ X , where f : X → R for X ⊂ R.

∇f(x) The gradient of a function at x ∈ X , where f : X → R for X ⊂ Rd. It holds that

∇f(x) =
(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xd

)
.

` : Rd → R A loss function indicating the error in prediction incurred by the given
weights, `(w). If subscripted, `i typically indicates the loss on the ith instance, with `(w) =
1
n

∑n
i=1 `i(w) for n instances.

c : Rd → R A generic objective function, that we want to minimize, for the learned
variable w. This could be, for example, a loss plus a regularizer.

Random variables and probabilities
X A univariate random variable is written in uppercase.

X The space of values for the random variable.

x Lowercase variable is an instance or outcome, x ∈ X .

X A multivariate random variable is written bold uppercase.

x Lowercase bold variable is a multivariate instance. In particular cases, when the
variable value is treated as a vector, we will use x.

N (µ, σ2) A univariate Gaussian distribution, with parameters µ, σ2.
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∼ indicates that a variable is distributed as e.g., X ∼ N (µ, σ2).

Parameters and estimation

D A data set, typically composed of n elements of multivariate inputs X ∈ Rn×d and
univariate outputs y ∈ Rn or multivariate outputs Y ∈ Rn×m. The data set will also be
referred to as a set of indexed tuples; i.e., D = {(x1, y1), (x2, y2), ..., (xn, yn)}.

F The function class or hypothesis space. Our learning algorithms will be restricted
implicitly to selecting a function from this set. For example, in linear regression, our
function class is F = {f : Rd → R | f(x) = x>wforsomew ∈ Rd}.

ω The true parameters for the (generalized) linear regression and classification models,
typically with ω ∈ Rd.

w The approximated parameters for the (generalized) linear regression and classification
models, typically with w ∈ Rd. When discussing w as the maximum likelihood solution on
some data, we write wML(D), to indicate that the variability arises from D.

maxa∈B c(a) The maximum value of a function c across values a in a set B.

argmaxa∈B c(a) The item a in set B that produces the maximum value c(a).

Norms

‖x‖ A norm on x.

‖x‖2 The `2 norm on a vector, ‖x‖2 =
√∑d

i=1 x
2
i . This norm gives the Euclidean distance

from the origin of the coordinate system to x; that is, it is the length of vector x.

‖x‖22 The squared `2 norm on a vector, ‖x‖22 =
∑d
i=1 x

2
i .

‖x‖p The general `p norm on a vector, ‖x‖p = (
∑d
i=1 |x|

p
i )1/p.
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Useful formulas and rules

log
(
x

y

)
= log(x)− log(y)

log (xy) = y log(x)
m∑
i=1

ai

ˆ
X
fi(x)p(x)dx =

ˆ
X

m∑
i=1

aifi(x)p(x)dx . Can bring sum into integral

d

dx

ˆ
X
f(x)p(x)dx =

ˆ
X

d

dx
f(x)p(x)dx . Can (almost always) bring derivative

into integral
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Chapter 1

A First Step in Machine Learning: Motivating a
Probabilistic Formulation

Machine learning involves a broad range of techniques for learning from data. A central
goal — and the one we largely discuss in this handbook — is prediction. Many techniques
learn a function f : Rd → R that inputs attributes or features about an item, and produces
an output prediction about that item. For example, consider a setting where you would like
to guess or predict the price of a house based on information about that house. You might
have features such as its age, the size of the house and, of course, distance to the nearest
bakery. Without any previous examples of house costs, i.e., without any data, it might be
hard to guess this price. However, imagine you are given a set of house features and the
corresponding selling costs, for houses that sold this year. Let x ∈ Rd be a vector of the
features for a house, in this case x = [x1 x2 x3] =[age, size, distance to bakery] and
the target y = price. If we have 10 examples or instances of previous house prices, we have
a dataset: (x1, y1), . . . , (x10, y10), where (xi, yi) is the feature-price pair for the ith house in
your set of instances. A natural goal is to find a function f that accurately recreates the
data, for example by trying to find a function f that results in a small difference between
the prediction, f(xi), and the actual price, yi, for each house.

We can formalize this as an optimization problem. Imagine we have some space of
possible functions, F , from which we can select our function f . For a simple case, let
us imagine that the function is linear: f(x) = w0 + x1w1 + x2w2 + x3w3 for any w =
[w0 w1 w2 w3] ∈ Rd where w0 is the intercept of the linear function. We can try to find a
function from the class of linear functions that minimizes these squared differences

min
f∈F

10∑
i=1

(f(xi)− yi)2

As we will see later, this optimization problem is simple to solve for linear functions. The
solution is a straight line that tries to best fit the observed targets y. A simple illustration
of such a function, for only one attribute, is depicted in Figure 1.1.

Once we have this function, when we see a new house, we hope that it is similar enough
to the previous houses so that this function adequately predicts its house price. The learned
function f interpolates between these 10 points to predict on unseen points. But, a natural
question is, did we interpolate well and is the learned f going to produce an accurate
prediction on new houses? If you want to use this learned function f in practice, you want
to have such a characterization.

In the agnostic development above, it is difficult to answer such questions. We can make
intuitive modifications that we hope will provide more accurate predictions, like extending
the class of functions to complex non-linear functions. But, these functional modifications
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Figure 1.1: An example of a linear regression fitting on data set D =
{(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}. The task of the optimization process is to find the best
linear function f(x) = w0 + w1x so that the sum of squared errors e2

1 + e2
2 + e2

3 + e2
4 is

minimized.

still do not help characterize accuracy of the prediction on new houses. Rather, what we
are missing is a notion of confidence. How confident are we in the predictions? Did we
see enough previous houses to be confident about this prediction? What is the source
of variability? How do we deal with variability? All these types of questions require a
probabilistic treatment.

In this handbook, we start by providing an introduction to probability, to provide a
base for dealing with uncertainty in machine learning. We then return to learning these
functions, once we have the probabilistic tools to better understand how to approach the
answers to these questions. Much of the required mathematical background will involve
basic understanding of probability and optimization; this handbook will attempt to provide
most of that required background throughout.
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Chapter 2

Introduction to Probabilistic Modeling

Modeling the world around us and making predictions about the occurrence of events is a
multidisciplinary endeavor standing on the solid foundations of probability theory, statistics,
and computer science. Although intertwined in the process of modeling, these fields have
relatively discernible roles and can be, to a degree, studied individually. Probability theory
brings the mathematical infrastructure, firmly grounded in its axioms, for manipulating
probabilities and equips us with a broad range of models with well-understood theoretical
properties. Statistics contributes frameworks to formulate inference and the process of nar-
rowing down the model space based on the observed data and our experience in order to
find, and then analyze, solutions. Computer science provides us with theories, algorithms,
and software to manage the data, compute the solutions, and study the relationship be-
tween solutions and available resources (time, space, computer architecture, etc.). As such,
these three disciplines form the core quantitative framework for all of empirical science and
beyond.

Probability theory and statistics have a relatively long history; the formal origins of
both can be traced to the 17th century. Probability theory was developed out of efforts
to understand games of chance and gambling. The correspondence between Blaise Pascal
and Pierre de Fermat in 1654 serves as the oldest record of modern probability theory.
Statistics, on the other hand, originated from data collection initiatives and attempts to
understand trends in the society (e.g., manufacturing, mortality causes, value of land)
and political affairs (e.g., public revenues, taxation, armies). The two disciplines started
to merge in the 18th century with the use of data for inferential purposes in astronomy,
geography, and social sciences. The increased complexity of models and availability of data
in the 19th century emphasized the importance of computing machines. This contributed
to establishing the foundations of the field of computer science in the 20th century, which is
generally attributed to the introduction of the von Neumann architecture and formalization
of the concept of an algorithm. The convergence of the three disciplines has now reached
the status of a principled theory of probabilistic inference with widespread applications in
science, business, medicine, military, political campaigns, etc. Interestingly, various other
disciplines have also contributed to the core of probabilistic modeling. Concepts such as a
Boltzmann distribution, a genetic algorithm, or a neural network illustrate the influence of
physics, biology, psychology, and engineering.

We will refer to the process of modeling, inference, and decision making based on prob-
abilistic models as probabilistic reasoning or reasoning under uncertainty. Some form of
reasoning under uncertainty is a necessary component of everyday life. When driving, for
example, we often make decisions based on our expectations about which way would be
best to take. While these situations do not usually involve an explicit use of probabilities
and probabilistic models, an intelligent driverless car such as Google Chauffeur must make
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use of them. And so must a spam detection software in an email client, a credit card fraud
detection system, or an algorithm that infers whether a particular genetic mutation will re-
sult in disease. Therefore, we first need to understand the concept of probability and then
introduce a formal theory to incorporate evidence (e.g., data collected from instruments) in
order to make good decisions in a range of situations.

At a basic level, probabilities are used to quantify the chance of the occurrence of events.
As Jacob Bernoulli brilliantly put it in his work The Art of Conjecturing (1713), “To make a
conjecture [prediction] about something is the same as to measure its probability. Therefore,
we define the art of conjecturing [science of prediction] or stochastics, as the art of measuring
probabilities of things as accurately as possible, to the end that, in judgements and actions,
we may always choose or follow that which has been found to be better, more satisfactory,
safer, or more carefully considered.” The techniques of probabilistic modeling formalize
many intuitive concepts. In a nutshell, they provide toolkits for rigorous mathematical
analysis and inference, often in the presence of evidence, about events influenced by factors
that we either do not fully understand or have no control of.

To provide a quick insight into the concept of uncertainty and modeling, consider rolling
a fair six-sided die. We could accurately predict, or so we think, the outcome of a roll if we
carefully incorporated the initial position, force, friction, shape defects, and other physical
factors and then executed the experiment. But the physical laws may not be known, they
can be difficult to incorporate or such actions may not even be allowed by the rules of the
experiment. Thus, it is practically useful to simply assume that each outcome is equally
likely; in fact, if we rolled the die many times, we would indeed observe that each number is
observed roughly equally. Assigning an equal chance (probability) to each outcome of the
roll of a die provides an efficient and elegant way of modeling uncertainties inherent to the
experiment.

Another, more realistic example in which collecting data provides a basis for simple
probabilistic modeling is a situation of driving to work every day and predicting how long it
will take us to reach the destination tomorrow. If we recorded the “time to work” for a few
months we would observe that trips generally took different times depending on many inter-
nal (e.g., preferred speed for the day) and also external factors (e.g., weather, road works,
encountering a slow driver). While these events, if known, could be used to predict the
exact duration of the commute, it is unrealistic to expect to have full information—rather
we have partial observability. It is useful to provide ways of aggregating external factors via
collecting data over a period of time and providing the distribution of the commute time.
Such a distribution, in the absence of any other information, would then facilitate reasoning
about events such as making it on time to an important meeting at 9 am.

The techniques of probabilistic modeling provide a formalism for dealing with such
repetitive experiments influenced by a number of external factors over which we have little
control or knowledge. With such a formalism, we can better understand and improve
how we make predictions, because we can more clearly specify our assumptions about our
uncertainty and explicitly reason about possible outcomes. In this chapter, we introduce
probabilities and probability theory, from the beginning. Because probability is such a
fundamental concept in machine learning, it is worth understanding where it comes from.
Nonetheless, following the spirit of these notes, the treatment will be brief and focus mostly
on what is needed to understand the development in following chapters.
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2.1 Probability Theory and Random Variables
Probability theory is as a branch of mathematics that deals with measuring the likelihood of
events. At the heart of probability theory is the concept of an experiment. An experiment
can be the process of tossing a coin, rolling a die, checking the temperature tomorrow or
figuring out the location of one’s keys. When carried out, each experiment has an outcome,
which is an element drawn from a set of predefined options, potentially infinite in size. The
outcome of a roll of a die is a number between one and six; the temperature tomorrow
might be a real number; the outcome of the location of one’s keys can be a discrete set of
places such as a kitchen table, under a couch, in office etc. In many ways, the main goal of
probabilistic modeling is to formulate a particular question or a hypothesis pertaining to the
physical world as an experiment, collect the data, and then construct a model. Once a model
is created, we can compute quantitative measures of sets of outcomes we are interested in
and assess the confidence we should have in these measures.

We can build up rules of probability, based on an elegantly simple set of axioms called
the axioms of probability. Let the sample space (Ω) be a non-empty set of outcomes and
the event space (E) be a non-empty set of subsets of Ω. For example, Ω = {1, 2, 3} and one
possible event is A = {1, 3} ∈ E , where the event is that a 1 or a 3 is observed. The event
space E must satisfy the following properties1

1. A ∈ E ⇒ Ac ∈ E (where Ac is the complement of the event A: Ac = Ω−A)

2. A1, A2, . . . ∈ E ⇒
⋃∞
i=1Ai ∈ E

3. E is non-empty (in fact, we know from 1 and 2 that ∅ ∈ E and Ω ∈ E)

If E satisfies these three properties, then (Ω, E) is said to be a measurable space. Now we
can define the axioms of probability, which make it more clear why these two conditions
are needed for our event space to define meaningful probabilities over events. A function
P : E → [0, 1] satisfies the axioms of probability if

1. P (Ω) = 1

2. A1, A2, . . . ∈ E , Ai ∩Aj = ∅ ∀i, j ⇒ P (∪∞i=1Ai) =
∑∞
i=1 P (Ai)

is called a probability measure or a probability distribution. The tuple (Ω,A, P ) is called the
probability space.

The beauty of these axioms lies in their compactness and elegance. Many useful ex-
pressions can be derived from the axioms of probability. For example, it is obvious that
P (Ac) = 1 − P (A). This makes it more clear why we required that if an event is in the
event space, then its complement should also be in the event space: if we can measure the
probability of an event, then we know that the probability of that event not occurring is
1 minus that probability. Similarly, we require that if two events A1, A2 are disjoint, then
P (A1 ∪A2) = P (A1) + P (A2): the probability of either event occurring is the sum of their
probabilities, because there is no overlap in the outcomes in the events. Another property

1Such a set is usually called a sigma algebra or sigma field. This terminology feels daunting and is only
due to historical naming conventions. Because the sigma algebra is simply the set of events to which we can
assign probabilities (measure), we will use the longer but more clear name.
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we can infer is that we always have Ω,∅ ∈ E , where ∅ corresponds to the event where
nothing occurs—which must have zero probability.

Example 1: [Discrete variables (countable)] Consider modeling the probabilities of the roll
of a dice. The outcome space is the finite set Ω = {1, 2, 3, 4, 5, 6} and the event space E
is the power set P(Ω) = {∅, {1}, {2}, . . . , {2, 3, 4, 5, 6},Ω}, which consists of all possible
subsets of Ω. A natural probability distribution on (Ω, E) gives each dice roll a 1/6 chance
of occurring, defined as P ({x}) = 1/6 for x ∈ Ω, P ({1, 2}) = 1/3 and so on. �

Example 2: [Continuous variables (uncountable)] Consider modeling the probabilities of
the stopping time of a car, in the range of 3 seconds to 6 seconds. The outcome space is the
continuous interval Ω = [3, 6]. An event could be that the car stops within 3 to 3.1 seconds,
giving A = [3, 3.1] ∈ E . The probability P (A) of such an event is likely low, because it would
be a very fast stopping time. We could then start considering all possible time intervals for
the event space, and corresponding probabilities. We can already see that this will be a bit
more complicated for continuous variables, and so we more rigorously show how to define
E and P below in Section 2.2.2. �

These two examples demonstrate the two most common cases we will encounter: discrete
variables and continuous variables. The terms above—countable and uncountable—indicate
whether a set can be enumerated or not. For example, the set of natural numbers can be
enumerated, and so is countable, whereas the set of real numbers cannot be enumerated—
there is always another real number between any two real numbers—and so is uncountable.
Though this distinction results in real differences—such as using sums for countable sets
and integrals for uncountable sets—the formalism and intuition will largely transfer between
the two settings. We will focus mostly on discrete and continuous variables. Much of
the same ideas also transfer to mixed variables, where outcome spaces are composed of
both discrete and continuous sets such as Ω = [0, 1] ∪ {2}. Further, for the uncountable
setting, we specifically discuss continuous sets, i.e., those are unions of continuous intervals
such as Ω = [0, 1] ∪ [5, 10]. Because almost all uncountable sets that we will want to
consider are continuous, we will interchangeably use the terms continuous and uncountable
to designate such spaces. Finally, discrete sets can either be finite, such as {1, 2, 3}, or
countably infinite, such as the natural numbers. Continuous sets are clearly infinite, and
are said to be uncountably infinite.

Before going further in-depth on how to define probability distributions, we first in-
troduce random variables, and from here on will deal strictly with random variables. A
random variable lets us more rigorously define transformations of probability spaces; once
we execute that transformation, we can forget about the underlying probability space and
can focus on the events and distribution only on the random variable. This is in fact what
you do naturally when defining probabilities over variables, without needing to formalize it
mathematically. Of course, here we will formalize it.

Consider again the dice example, where now instead you might want to know: what is
the probability of seeing a low number (1-3) or a high number (4-6)? We can define a new
probability space with ΩX = {low, high}, EX = {∅, {low}, {high},ΩX} and PX({low}) =
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1/2 = PX({high}). The transformation function X : Ω→ ΩX is defined as

X(ω) def=
{
low if ω ∈ {1, 2, 3}
high if ω ∈ {4, 5, 6}

The distribution PX is immediately determined from this transformation. For example,
PX({low}) = P ({ω : X(ω) = low}), because the underlying probability space indicates the
likelihood of seeing a 1, 2 or 3. Now we can answer questions about the probability of seeing
a low number of a higher number.

This function X is called a random variable. It is slightly confusing that it is neither
random, nor a variable, sinceX is a function. However, from this point onward, we will treat
X like it is a variable that is random, by more simply writing statements like PX(X = x)
or PX(X ∈ A), rather than P ({ω : X(ω) = x}) or P ({ω : X(ω) ∈ A}). For correctness, we
can remember that it is a function defined on a more complex underlying probability space.
But, in practice, we can start thinking directly in terms of the random variable X and the
associated probabilities. Similarly, even for the dice role, we can acknowledge that there is
a more complex underlying probability space, defined by the dynamics of the dice. When
considering only the probabilities of discrete outcomes from 1-6, we have already implicitly
applied a transformation on top of probabilities of the physical system.

Once we have a random variable, it defines a valid probability space (ΩX , EX , PX).
Therefore, all the same rules of probability apply, the same understanding of how to define
distributions, etc. In fact, we can always define a random variable X that corresponds
to no transformation, to obtain the original probability space. For this reason, we can
move forward assuming we are always dealing with random variables, without losing any
generality. We will drop the subscripts, and consider (Ω, E , P ) to be defined for X. For a
more in-depth discussion on random variables, see Appendix ??.

2.2 Defining distributions
Now we would like to know how to specify P to satisfy the axioms of probability, to model
the probability of X taking values in an event A, P (X ∈ A) with outcome space Ω. This
task feels daunting, because it seems we need to define the likelihood for every possible
event—set of outcomes—and, in such a way that satisfies the axioms of probability, no
less! Fortunately, instead we can define the distribution using a function defined directly on
instances x ∈ Ω. It is convenient to separately consider discrete (countable) and continuous
(uncountable) sample spaces. For the discrete case, we will define probability mass functions
and for the continuous case, we will define probability density functions.

2.2.1 Probability mass functions

Let Ω be a discrete sample space and E = P (Ω), the power set of Ω. A function p : Ω→ [0, 1]
is called a probability mass function (pmf) if∑

ω∈Ω
p (ω) = 1.
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The probability of any event A ∈ E is defined as

P (A) def=
∑
ω∈A

p(ω).

It is straightforward to verify that P satisfies the axioms of probability and, thus, is a
probability distribution. For discrete random variables, therefore, we will often write P (X =
x), which means that P (X = x) = p(x) for each outcome x ∈ Ω. We rarely, if ever, define
the distribution directly, and rather define the pmf p which induces the distribution P .

Example 3: Consider a roll of a fair six-sided die; i.e., Ω = {1, 2, 3, 4, 5, 6}, and the event
space E = P(Ω). What is the probability that the outcome is a number greater than 4?

First, because the die is fair, we know that p(ω) = 1
6 for ∀ω ∈ Ω. Now, let A be an

event in E that the outcome is greater than 4; i.e., A = {5, 6}. Thus,

P (A) =
∑
ω∈A

p(ω) = 1
3 .

Notice that the distribution P is defined on the elements of E , whereas p is defined on the
elements of Ω. That is, P ({1}) = p(1), P ({2}) = p(2), P ({1, 2}) = p(1) + p(2), etc. �

To specify P , therefore, we need to determine how to specify the pmf, i.e., the probability
of each discrete outcome. The pmf is often specified as a table of probability values. For
example, to model the probability of a birthday for each day in the year, one could have
a table of 365 values between zero and one, as long as the probabilities sum to 1. These
probabilities could be computed from data about individuals birthdays, using counts for
each day and normalizing by the total number of people in the population to estimate the
probability of seeing a birthday on a given day. Such a table of values is very flexible,
allowing precise probability values to be specified for each outcome. There are, however, a
few useful pmfs that have a (more restricted) functional form.

The Bernoulli distribution derives from the concept of a Bernoulli trial, an experiment
that has two possible outcomes: success and failure. In a Bernoulli trial, a success occurs
with probability α ∈ [0, 1] and, thus, failure occurs with probability 1− α. A toss of a coin
(heads/tails), a basketball game (win/loss), or a roll of a die (even/odd) can all be seen as
Bernoulli trials. We model this distribution by setting the sample space to two elements
and defining the probability of one of them as α. More specifically, Ω = {success, failure}
and

p(ω) =
{
α ω = success
1− α ω = failure

where α ∈ (0, 1) is a parameter. If we take instead that Ω = {0, 1}, we can compactly write
the Bernoulli distribution as p(ω) = αω(1− α)1−ω for ω ∈ Ω. The Bernoulli distribution is
often written Bernoulli(α). As we will see, a common setting where we use the Bernoulli is
for binary classification, say where we try to predict whether a patient has the flu (outcome
0) or does not have the flue (outcome 1).

The uniform distribution for discrete sample spaces is defined over a finite set of out-
comes each of which is equally likely to occur. Let Ω = {1, . . . , n}; then for ∀ω ∈ Ω

p(ω) = 1
n
.
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Figure 2.1: Two probability mass functions, for discrete random variables. The Poisson
distribution continues further on the x-axis (for variable ω ∈ N), with probability decreasing
to zero as ω →∞.

The uniform distribution does not contain parameters; it is defined by the size of the sample
space. We refer to this distribution as Uniform(n). We will see later that the uniform
distribution can also be defined over finite intervals in continuous spaces.

The Poisson distribution reflects the probability of how many incidences occur (implic-
itly within a fixed time interval). For example, a call center is likely to receive 50 calls per
hour, with a much smaller probability on only receiving 5 calls or receiving as many as 1000
calls. This can be modeled with a Poisson(λ), where λ represents the expected number of
calls. More formally, Ω = {0, 1, . . .} and for ∀ω ∈ Ω

p(ω) = λωe−λ

ω! .

This mass function is hill-shaped, where the top of the hill is mostly centered around λ
and there is a skew to having a short, steep left side of the hill and a long, less-steep right
tail to the hill. The Poisson distribution is defined over an infinite sample space, but still
countable. This is depicted in Figure 2.1.

Exercise 1: Prove that
∑
ω∈N p(ω) = 1 for the Poisson distribution. �

Example 4: As a prelude to estimating parameters to distributions, consider an example of
how we might use a Bernoulli distribution and determine the parameter α to the Bernoulli.
A canonical example for Bernoulli distributions is a coin flip, where the outcomes are heads
(H) or tails (T). P (X = H) = α is the probability of seeing H and P (X = T) = 1 − α is
the probability of seeing T. We commonly assume α = 0.5; this is called a fair (unbiased)
coin. If we flipped the coin many times, we would expect to see about the same number of
H and T. However, a biased coin may have some skew towards H or T. If we flipped the
coin many times, if α > 0.5 we should eventually notice more H come up and if α < 0.5, we
should notice more T.

How might we actually determine this α? An intuitive idea is to use repeated experi-
ments (data), just as described above: flip the coin many times to see if you can gauge the
skew. If you see 1000 H and 50 T, a natural guess for the bias is α = 1000

1000+50 ≈ 0.95. How
confident are you in this solution? Is it definitely 0.95? And how do we more formally define
why this should be the solution? This is in fact a reasonable solution, and corresponds to
the maximum likelihood solution, as we will discuss in Chapter 5. �

15



2.2.2 Probability density functions

The treatment of continuous probability spaces is analogous to that of discrete spaces,
with probability density functions (pdfs) replacing probability mass functions and integrals
replacing sums. In defining pdfs, however, we will not be able to use tables of values, and
will be restricted to functional forms. The main reason for this difference stems from the
fact that it no longer makes sense to measure the probability of a singleton event. Consider
again the stopping time for a car, discussed in Example 2. It would not make a lot of sense
to ask the probability of the car stopping in exactly 3.14159625 seconds; realistically, the
probability of such a precise event is vanishingly small. In fact, the probability of seeing
precisely that stopping time is zero, because the set {3.14159625} as a subset of [3, 6] is a
set of measure zero. Essentially, it takes up zero mass inside the interval [3, 6], which is after
all uncountably infinite. Instead, we will have to consider the probabilities of intervals, like
[4, 5] or [5.667, 5.668].

For continuous spaces, we will assume that the set of events E consists of all possible
intervals, called the Borel field B(Ω). For example, if Ω = R, the Borel field B(R) consists
of all open intervals (e.g., (0, 1)), closed intervals (e.g.,[0, 1]) and semi-open intervals (e.g.,
[0, 1)) in R, as well as sets that can be obtained by a countable number of basic set operations
on them, such as unions. This results in a more restricted set of events than the power set
of Ω, which would, for example, include sets with only a singleton event. B(R) is still a
huge set—an uncountably infinite set—but still smaller than P(R). Nicely, though, B(R)
still contains all sets we could conceivably want to measure. The Borel field can be defined
for any measurable space, such as higher-dimensional spaces like Ω = R2, with events such
as A = [0, 1]× [0, 1] ⊂ Ω or A = [1, 2]× [−1, 4] ∪ [0, 0.1]× [10, 1000].

Let now Ω be a continuous sample space and E = B (Ω). A function p : Ω → [0,∞) is
called a probability density function (pdf) if2

ˆ
Ω
p(ω)dω = 1.

The probability of an event A ∈ B(Ω) is defined as

P (A) def=
ˆ
A
p(ω)dω.

Notice that the definition of the pdf is not restricted to having a range [0, 1], but rather to
[0,∞). For pmfs, the probability of a singleton event {ω} is the value of the pmf at the
sample point ω; i.e., P ({ω}) = p(ω). Since probability distributions P are restricted to the
range [0, 1], this implies pmfs must also be restricted to that range. In contrast, the value of
a pdf at point ω is not a probability; it can actually be greater than 1. Though it is common
when speaking informally to call p(x) the probability of x, more accurately we call this the
density at x because it is most definitely not a probability. In fact, as mentioned above, the
probability at any single point is 0 (i.e., a countable subset of Ω is a set of measure zero).

A natural confusion is how p can integrate to 1, but actually have values larger than 1.
The reason for this is that p(x) can be (much) larger than 1, as long as its only for a very

2For correctness, we would like to note that this definition uses Lebesgue integration. You do not need to
know about nuanced differences in integration formulations; for all settings we consider, all the definitions
are equivalent and your knowledge of integration rules will be effective.
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Figure 2.2: Four probability density functions, for continuous random variables. Images
taken from Wikipedia.3

small interval. Consider the small interval A = [x, x+ ∆x], with probability

P (A) =
ˆ x+∆x

x
p(ω)dω

≈ p(x)∆x.

A potentially large value of the density function is compensated for by the small interval
∆x to result in a number between 0 and 1. So, even if p(x) is a million, and the density
of points in the small interval or ball around x is large, the probability of an event must
still be ≤ 1. The density does indicate that there is high likelihood around that point. By
having a huge density around x, this suggests that the density for other points is zero or
near zero and that the pdf is extremely peaked around x.

Unlike pmfs, we cannot so easily define pdfs p to flexibly provide specific probabilities
for each outcome with a table of probabilities. Rather, for pdfs, we will usually use a known
pdf that satisfies the required properties. Further, unlike the discrete case, we will never
write P (X = x), because that would be zero. Rather, we will typically write P (X ∈ A)
or more explicitly probabilistic questions like P (X ≤ 5). We highlight four pdfs here, that
will be used throughout this book; for more examples of pdfs, see Appendix ??.

The uniform distribution is defined by an equal value of a probability density function
over a finite interval in R. Thus, for Ω = [a, b] the uniform probability density function

3Many images in this document are currently taken from other sources. This is generally not a good
practice, and we will be replacing these images someday soon. We want to highlight that we do not encourage
this for formal documents, but only use them here in these educational notes for your benefit temporarily.
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∀ω ∈ [a, b] is defined as

p(ω) def= 1
b− a

.

One can also define Uniform(a, b) by taking Ω = R and setting p(ω) = 0 whenever ω is
outside of [a, b]. This form is convenient because Ω = R can then be used consistently for
all one-dimensional probability distributions. When we do this, we will refer to the subset
of R where p(ω) > 0 as the support of the density function.

The exponential distribution is defined over a set of non-negative numbers; i.e., Ω =
[0,∞). For parameter λ > 0, its pdf is

p(ω) = λe−λω.

As the name suggests, this pdf has an exponential form, with sharply decreasing probability
for values x as they increase in magnitude. As before, the sample space can be extended to
all real numbers, in which case we would set p(ω) = 0 for ω < 0.

The Gaussian distribution or normal distribution is one of the most frequently used
probability distributions. It is defined over Ω = R, with two parameters, µ ∈ R and σ > 0
and pdf

p(ω) = 1√
2πσ2

e−
1

2σ2 (ω−µ)2

As we will discuss next, for a random variable that is Gaussian distributed, the parameter
µ is the mean or expected value and σ2 is the variance. We will refer to this distribution as
Gaussian(µ, σ2) or N (µ, σ2). When the mean is zero, and the variance is 1 (unit variance),
this Gaussian is called the standard normal. This specific Gaussian has a name because it is
so frequently used. Both Gaussian and exponential distributions are members of a broader
family of distributions called the natural exponential family.

The Laplace distribution is similar to the Gaussian, but is more peaked around the
mean. It is also defined over Ω = R, with two parameters, µ ∈ R and b > 0 and pdf

p(ω) = 1
2be
− 1
b
|ω−µ|

The gamma distribution is used to model waiting times, and is similar to the Poisson dis-
tribution but for continuous variables. It is defined over Ω = (0,∞), with shape parameter
α > 0 and rate parameter β > 0 and pdf

p(ω) = βα

Γ(α)ω
α−1e−βω

where Γ(α) is called the gamma function. A random variable that is gamma-distributed is
denoted X ∼ Gamma(α, β).

Example 5: Consider selecting a number (x) between 0 and 1 uniformly randomly (Figure
2.3). What is the probability that the number is greater than or equal to 3

4 or less than
and equal to 1

4?
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Figure 2.3: Selection of a random number (x) from the unit interval [0, 1].
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Figure 2.4: A histogram of recordings of the commute time (in minutes) to work. The
data set contains 340 measurements collected over one year, for a distance of roughly 3.1
miles. The data was modeled using a gamma family of probability distributions, with the
particular location and scale parameters estimated from the raw data. The values of the
gamma distribution are shown as dark circles.

We know that Ω = [0, 1]. The distribution is defined by the uniform pdf, p(ω) = 1
b−a = 1

where a = 0, b = 1 define the interval for the outcome space. We define the event of interest
as A =

[
0, 1

4

]
∪ [3

4 , 1] and calculate its probability as

P (A) =
ˆ 1/4

0
p(ω)dω +

ˆ 1

3/4
p(ω)dω . p(ω) = 1

=
(1

4 − 0
)

+
(

1− 3
4

)
= 1

2 .

What if we had instead asked the probability that the number is strictly greater than 3
4 or

strictly less than 1
4? Because the probability of any individual event in the continuous case

is 0, there is no difference in integration if we consider open or closed intervals. Therefore,
the probability would still be 1

2 . �

Example 6: Let’s imagine you have collected your commute times for the year4, and
would like to model the probability of your commute time to help you can make predictions
about your commute time tomorrow. For this setting, your random variable X corresponds
to the commute time, and you need to define probabilities for this random variable. This
data could be considered to be discrete, taking values, in minutes, {4, 5, 6, . . . , 26}. You
could then create histograms of this data (table of probability values), as shown in Figure
2.4, to reflect the likelihood of commute times.

4as co-author Predrag amazingly did, and you get to see his fascinating data here.
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The commute time, however, is not actually discrete, and so you would like to model
it as a continuous RV. One reasonable choice is a gamma distribution. How, though, does
one take the recorded data and determine the parameters α, β to the gamma distribution?
Estimating these parameters is actually quite straightforward, though not as immediately
obvious as estimating tables of probability values; we discuss how to do so in Chapter 5.
The learned gamma distribution is also depicted in Figure 2.4.

Given the gamma distribution, one could now ask the question: what is the most likely
commute time today? This corresponds to maxω p(ω), which is called the mode of the
distribution. Another natural question is the average or expected commute time. To obtain
this, you need the expected value (mean) of this gamma distribution, which we define below
in Section 2.4. �

2.3 Multivariate random variables
Much of the above development extends to multivariate random variables—a vector of ran-
dom variables—because the definition of outcome spaces and probabilities is general. The
examples so far, however, have dealt with scalar random variables, because for multivariate
random variables, we need to understand how variables interact. In this section, we discuss
several new notions that only arise when there are multiple random variables, including
joint distributions, conditional distributions, marginals and dependence between variables.

Let us start with a simpler example, with two discrete random variables X and Y with
outcome spaces X and Y. There is a joint probability mass function p : X ×Y → [0, 1], and
corresponding joint probability distribution P , such that

p(x, y) def= P (X = x, Y = y)

where the pmf needs to satisfy ∑
x∈X

∑
y∈Y

p(x, y) = 1.

For example, if X = {young, old} and Y = {no arthritis, arthritis}, then the pmf could be
the table of joint probabilities This fits within the definition of probability spaces, because

Y
0 1

X
0 P (X=0, Y=0) = 1/2 P (X=0, Y=1) = 1/100
1 P (X=1, Y=0) = 1/10 P (X=1, Y=1) = 39/100

Table 2.1: A joint probability table for random variables X and Y .

Ω = X × Y is a valid space, and
∑
ω∈Ω p(ω) =

∑
(x,y)∈Ω p(x, y) =

∑
x∈X

∑
y∈Y p(x, y). The

random variable Z = (X,Y ) is a multivariate random variable, of two dimensions.
We can see that the two random variables interact, by looking at the joint probabilities

in the table. For example, the joint probability is small for young and having arthritis.
Further, there seems to be more magnitude in the rows corresponding to young, suggesting
that the probabilities are influenced by the proportion of people in the population that are
old or young. In fact, one might ask if we can figure out this proportion just from this table.
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The answer is a resounding yes, and leads us to marginal distributions and why we
might care about marginal distributions. Given a joint distribution over random variables,
one would hope that we could extract more specific probabilities, like the distribution over
just one of those variables, which is called the marginal distribution. The marginal can be
simply computed, by summing up over all values of the other variable

P (X = young) = p(young,no arthritis) + p(young, arthritis) = 51
100 .

A young person either does or does not have arthritis, so summing up over these two
possible cases factors out that variable. Therefore, using data collected for random variable
Z = (X,Y ), we can determine the proportion of the population that is young and the
proportion that is old.

In general, we can consider d-dimensional random variable X = (X1, X2, . . . , Xd) with
vector-valued outcomes x = (x1, x2, . . . , xd), such that each xi is chosen from some Xi.
Then, for the discrete case, any function p : X1 ×X2 × . . .×Xd → [0, 1] is called a multidi-
mensional probability mass function if∑

x1∈X1

∑
x2∈X2

· · ·
∑

xd∈Xd
p (x1, x2, . . . , xd) = 1.

or, for the continuous case, p : X1×X2× . . .×Xd → [0,∞] is a multidimensional probability
density function if

ˆ
X1

ˆ
X2

· · ·
ˆ
Xd
p (x1, x2, . . . , xd) dx1dx2 . . . dxd = 1.

A marginal distribution is defined for a subset of X = (X1, X2, . . . , Xd) by summing or
integrating over the remaining variables. For the discrete case, the marginal distribution
p (xi) is defined as

p (xi)
def=

∑
x1∈X1

· · ·
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

· · ·
∑
xd∈Xd

p (x1, . . . , xi−1, xi, xi+1, . . . , xd) ,

where the variable xi is fixed to some value and we sum over all possible values of the other
variables. Similarly, for the continuous case, the marginal distribution p (xi) is defined as

p (xi)
def=
ˆ
X1

· · ·
ˆ
Xi−1

ˆ
Xi+1

· · ·
ˆ
Xd
p (x1, . . . , xi−1, xi, xi+1, . . . , xd) dx1 . . . dxi−1dxi+1 . . . dxd.

Notice that we use p to define the density over x, but then we overload this terminology and
also use p for the density only over xi. To be more precise, we should define two separate
functions (pdfs), say px for the density over the multivariate random variable and pxi for
the marginal. It is common, however, to simply use p, and infer the random variable from
context. In most cases, it is clear; if it is not, we will explicitly highlight the pdfs with
additional subscripts.

2.3.1 Conditional distributions

Conditional probabilities define probabilities of a random variable X, given information
about the value of another random variable Y . More formally, the conditional probability
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p(y|x) for two random variables X and Y is defined as

p(y|x) def= p(x, y)
p(x) (2.1)

where p(x) > 0.

Exercise 2: Verify that p(y|x) sums (integrates) to 1 over all values y ∈ Y for a fixed
given x ∈ X , and thus satisfies the conditions of a probability mass (density) function. �

Equation (2.1) now allows us to calculate the posterior probability of an event A, given
some observation x, as

P (Y ∈ A|X = x) =


∑
y∈A p(y|x) Y : discrete

´
A p(y|x)dy Y : continuous

Writing p(x, y) = p(x|y)p(y) = p(y|x)p(x) is called the product rule. The extension to more
than two variables is straightforward. We can write

p(x1, . . . , xd) = p(xd|x1, . . . , xd−1)p(x1, . . . , xd−1).

By a recursive application of the product rule, we obtain

p(x1, . . . , xd) = p(xd|x1, . . . , xd−1)p(x1, . . . , xd−1)
= p(xd|x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2)p(x1, . . . , xd−2)
...
= p(xd|x1, . . . , xd−1)p(xd−1|x1, . . . , xd−2) . . . p(x2|x1)p(x1).

More compactly,

p(x1, . . . , xd) = p(x1)
d∏
i=2

p(xi|x1, . . . , xi−1) (2.2)

which is referred to as the chain rule or general product rule. For example, for three
variables, the product rule gives

p(x1, x2, x3) = p(x3|x2, x1)p(x2|x1)p(x1)

We can also derive Bayes’ rule, using the product rule:

p(x|y) = p(y|x)p(x)
p(y) . (2.3)

This uses the fact that giving p(x, y) = p(x|y)p(y) = p(y|x)p(x). Therefore, one really only
needs to remember the product rule, to easily recall Bayes’ rule.

You may notice that the order of variables in the product rule did not seem to matter.
It is in fact somewhat interesting that we can either define the conditional distribution
p(x|y) and marginal p(y) or we can define p(y|x) and p(x) and both equivalently recover
the joint distribution p(x, y). This property is simply a fact of the definition of conditional
distributions, and provides flexibility when estimating distributions. We will most use this
equivalence in the form of Bayes rule, when doing parameter estimation and maximum
likelihood. For work in graphical models, which is not discussed here, this flexibility is of
even greater importance.
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2.3.2 Independence of random variables

Two random variables are independent if their joint probability distribution factors into the
product of the marginals

p (x, y) = p(x)p(y).

One intuitive reason for this definition can be seen by considering X conditioned on Y . If
p(x|y) = p(x), then this means that the value of Y has no influence on the distribution over
X, and so they are independent. From the product rule, we know p(x, y) = p(x|y)p(y) and
since p(x|y) = p(x), this gives p(x, y) = p(x)p(y) as defined above.

The notion of independence can be generalized to more than two random variables. More
generally, d random variables are said to be mutually independent or jointly independent if
a joint probability distribution of any subset of variables can be expressed as a product of
marginal probability distributions of its components

p (x1, x2, . . . , xd) = p(x1)p(x2) . . . p(xd).

Another form of independence, called conditional independence, is used even more fre-
quently in machine learning. It represents independence between variables in the presence
of some other random variable (evidence); e.g.,

p (x, y|z) = p(x|z)p(y|z)

Interestingly, the two forms of independence are unrelated: neither one implies the other.
X and Y can be independent, but not conditionally independent given Z. X and Y can
be conditionally independent given Z, but not independent. We show this in two simple
examples in Figure ?? in the Appendix.

Here, we provide an example more directly related to machine learning, about why we
care about independence and conditional independence. If two variables are independent,
this has important modeling implications. For example, if feature X and target Y are
independent, then X is not useful for predicting Y and so is not a useful feature. If two
variables are conditionally independent given another variable, this can also have important
modeling implications. For example, if we have two features X1 and X2, with target Y ,
where X2 and Y are conditionally independent given X1, then feature X2 is redundant and
could potentially be discarded.

As a concrete example, let X1 = temperature in Celcius and X2 = temperature in
Fahrenheit, with Y = plants need watering. Y is definitely not independent of X2; however,
once X1 is known (or given), then there is no additional information to be gained from
X2 and so p(y|x1, x2) = p(y|x1) = p(y|x2). In general, recognizing independencies and
conditional independencies can inform and simplify the modeling procedure, and we will
see several examples in terms of simplifying maximum likelihood for i.i.d. data and in naive
Bayes for classification. We end this section with one more example, using a biased coin,
to highlight the distinction between independence and conditional independence.

Example 7: [Biased coin and conditional independence] Assume a manufacturer has pro-
duced a biased coin, where it does not equally randomly give heads (H) or tails (T). Rather,
it actually has some unknown probability α of seeing H when flipping the coin. Because this
bias is unknown, we will encode our uncertainty by defining a random Z = bias of the coin.
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In general, this random variable can take values in [0, 1]. For the purposes of this example,
let’s make this a bit simpler, and assume that we know the bias is one of Z = {0.1, 0.5, 0.8}.
If the bias is 0.5, that would mean this is an unbiased (fair) coin. Let’s further assume that
we think the probability of each bias is equally likely, meaning P (Z = z) = 1/3, because
the manufacturer gave us no reason to think any of 0.1, 0.5 or 0.8 to be more likely.

Now imagine that you flip the coin twice, and record the two outcomes x1 and x2. These
two separate flips correspond to two random variables, X1 and X2. The outcome space for
X1 and X2 is {H,T}. Given the true bias of the coin, α, the true distribution is Bernoulli
P (Xi = H|Z = α) = α. However, we do not know the bias α. Instead, we are modeling it
with a random variable Z, so that for each given Z = z, we know that P (Xi|Z = z) = z,
i.e., Xi is a Bernoulli random variable with parameter z. Because we do not know the true
bias, we have to marginalize over Z to get the marginal distribution over X1,

P (X1 = x) =
∑
z∈Z

P (X1 = x, Z = z)

=
∑
z∈Z

P (X1 = x|Z = z)P (Z = z) . product rule

= P (X1 = x|Z = 0.1)P (Z = 0.1) + P (X1 = x|Z = 0.5)P (Z = 0.5)+
+ P (X1 = x|Z = 0.8)P (Z = 0.8)

Are X1 and X2 conditionally independent given Z? The answer is yes, because given
the bias of the coin, knowing the outcome of X2 does not influence the distribution over
X1, i.e.,

P (X1 = x1, X2 = x2|Z = z) = P (X1 = x1|Z = z)P (X2 = x2|Z = z)

Regardless of what we observe for X2, we know the distribution over X1 is a Bernoulli with
the given bias z.

Are X1 and X2 independent? The answer is no, because without knowing the bias of
the coin, knowing the outcome of X2 tells us something about the Bernoulli distribution
over X1. For example, if X1 = T and X2 = H, then the second outcome suggests that the
bias might not be totally skewed towards T. More formally,

P (X1 = x1, X2 = x2) =
∑
z∈Z

P (X1 = x1, X2 = x2|Z = z)P (Z = z)

=
∑
z∈Z

P (X1 = x1|Z = z)P (X2 = x2|Z = z)P (Z = z)

which is not guaranteed to equal P (X1 = x1)P (X2 = x2), where

P (X1 = x1)P (X2 = x2)

=

∑
z1∈Z

P (X1 = x1|Z = z1)P (Z = z1)

∑
z2∈Z

P (X2 = x2|Z = z2)P (Z = z2)


�
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2.4 Expectations and moments
The expected value, or mean, of a random variable X is the average of repeatedly sampled x,
in the limit of sampling. It is not necessarily the value we expect to see most frequently—
that is called the mode. More precisely, given the pmf or pdf p for outcome space X , the
expectation of X is

E [X] def=


∑
x∈X xp(x) if X is discrete

´
X xp(x)dx if X is continuous

For a dice roll, where each number from 1 to 6 has uniform probability, the expected
value is 3.5 and the mode is tied for all numbers (i.e., it is multi-modal). For a Bernoulli
distribution, where X = {0, 1}, the expected value is α, which is not even an outcome that
will be observed, but is the average of 0s and 1s if we flipped the coin infinitely many times.
The mode in this case depends on α: if α > 0.5, making 1 have higher probability, then the
mode is 1; if α < 0.5, the mode is 0; otherwise, it is bimodal with modes 0 and 1. For a
Gaussian distribution, the expected value is the parameter µ, and the mode also equals µ.

In general, we may be interested in the expected value of functions of the random
variable X. For example, we may want to know E

[
X2], or more generally E

[
Xk
]
for some

k > 1. Or, we may want to know E
[
(X − c)k

]
for some k > 1 and a constant c. These are

called the moments of X. In general, for a function f : X → R, we can consider f(X) to
be a transformed random variables and define its expectation as

E [f(X)] =


∑
x∈X f(x)p(x) if X is discrete

´
X f(x)p(x)dx if X is continuous

If E [f(X)] = ±∞, we say that the expectation does not exist or is not well-defined.
One useful moment is the variance: the central second moment, where central indicates

c = E[X]. The variance indicates the amount that the random variable varies around
its mean. For example, for a Gaussian distribution, if the variance σ2 is large, then the
Gaussian is very wide, indicating a non-negligible density for a broader range of points x
around µ. Alternatively, if σ2 is almost zero, then the Gaussian is concentrated tightly
around µ.

We can also consider conditional expectations, and expectations for multivariate random
variables. For two random variables X and Y and function f : Y → R, the conditional
expectation is

E [f(Y )|X = x] =


∑
y∈Y f(y)p(y|x) if Y is discrete

´
Y f(y)p(y|x)dy if Y is continuous

Using the identity function f(y) = y results in the standard conditional expectation E [Y |x].

Exercise 3: Show the law of total expectations: E[Y ] = E[E[Y |X]], where the outer
expectation is over X and the inner expectation is over Y . For example, if both Y and X
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are discrete

E[E[Y |X]] =
∑
x∈X

p(x)E[Y |X = x]

=
∑
x∈X

p(x)
∑
y∈Y

yp(y|x)

�

For two random variablesX and Y and f : X×Y → R, we can also define the expectation
over the joint distribution, with one variable fixed

E [f(X, y)] =


∑
x∈X f(x, y)p(x|y) if X is discrete

´
X f(x, y)p(x|y)dx if X is continuous

or over both variables

E [f(X,Y )] =


∑
y∈Y p(y)E[f(X, y)] if Y is discrete

´
Y p(y)E[f(X, y)]dy if Y is continuous

For example, if X is continuous and Y is discrete, this gives

E [f(X,Y )] =
∑
y∈Y

p(y)E [f(X, y)]

=
∑
y∈Y

p(y)
ˆ
X
f(x, y)p(x|y)dx

Exercise 4: Show that
´
X

(∑
y∈Y f(x, y)p(x, y)

)
dx =

´
X E[f(x, Y )]p(x)dx. �

Just as above with variance, the covariance is one important instance of these expected
values, with f(x, y) = (x−E[X])(y−E[Y ]). The expected value under this function indicates
how the two variables vary together. We use specific notation for the covariance, because
it is so frequently used

Cov[X,Y ] = E [(X − E [X]) (Y − E [Y ])]
= E [XY ]− E [X]E [Y ] ,

with Cov[X,X] = V [X] being the variance of the random variable X. The correlation is
the covariance, normalized by the standard deviation—square root of the variance—of each
random variable

Corr[X,Y ] = Cov[X,Y ]√
V [X]

√
V [Y ]

.

The covariance can become larger, if X and Y themselves have large variance. The correla-
tion, on the other hand, is guaranteed to be between -1 and 1, and so is an scale-invariant
measure of how the variables vary together.
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Properties of expectations

Here we review some useful properties of expectations. Consider random variables, X and
Y . For a constant c ∈ R, it holds that:

1. E [cX] = cE [X]

2. E [X + Y ] = E [X] + E [Y ] . linearity of expectation

3. Var [c] = 0 . the variance of a constant is zero

4. Var [X] def= Cov[X,X] � 0, where Var [X] ≥ 0 is a scalar. We use Var [X] as a
shorthand for Cov[X,X].

5. Var [cX] = c2Var [X].

6. Cov[X,Y ] = E[(X − E[X])(Y − E(Y )] = E[XY ]− E[X]E[Y ]

7. Var [X + Y ] = Var [X] + Var [Y ] + 2Cov[X,Y ] . when d = m

In addition, if X and Y are independent random variables, it holds that:

8. E [XY ] = E [X]E [Y ] for all i, j

9. Var [X + Y ] = Var [X] + Var [Y ]

10. Cov[X,Y ] = 0.
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Chapter 3

An Introduction to Estimation

We first investigate a simple estimator—a sample average—with a focus on how we can
have confidence in our estimate. The sample average is the average of n samples from a
distribution. The sample average provides an estimate of the true mean. Depending on
the distribution, we might need a larger n to get an accurate estimate. In this chapter,
we provide the tools to understand the quality of our sample average, and introduce the
concepts of bias, consistency, sample complexity and concentration inequalities.

3.1 Estimating the Expected Value
We assume that we get n samples from an unknown distribution p, over outcome space X .
More formally, we assume we have n random variables X1, . . . , Xn, where E [Xi] = µ for
some unknown mean µ. The sample average estimator is

X̄ = 1
n

n∑
i=1

Xi (3.1)

Intuitively, we know as n gets larger, X̄ should get closer and closer to µ. But, how do we
show this? We will use concentration inequalities, which gives us the strong law of large
numbers, to show this in the next section.

First, let’s ask one slightly easier question: is this estimator unbiased? The bias of an
estimator is how far the expected value of the estimator deviates from the true value. For
the sample average estimator, the bias is

Bias(X̄) = E[X̄]− µ (3.2)

because µ is the true value we are trying to estimate. The estimator is said to be unbiased
if the Bias is zero. The expectation E[X̄] reflects that X̄ is random, due to the fact that
we could have observed many different plausible set of n samples. For example, consider
the flips of a coin, with p(Y = 1) = 0.5. Imagine the sequence x1 = 0, x2 = 0, x3 = 1 was
observed, for n = 3. The sample average estimator is 1/3. But, another possible sequence
could x1 = 1, x2 = 0, x3 = 1 with sample average 2/3. The random variable X1 represents
that the first flip could be 0 or 1, with probability 0.5; the random variable X2 represents
that the second flip could be 0 or 1, with probability 0.5; and so on. Because X̄ is the
average of n random variables, it itself is also random.
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Now, let us compute this expectation.

E[X̄] = E
[

1
n

n∑
i=1

Xi

]

= 1
n

n∑
i=1

E [Xi] . E [Xi] = µ, by assumption

= 1
n

n∑
i=1

µ = 1
n
nµ

= µ

So the bias is zero, because Bias(X̄) = E[X̄]− µ = µ− µ = 0.
We can also characterize the variance of the estimator. If the Xi are i.i.d. random

variables with variance σ2, then

Var
[
X̄
]

= Var
[

1
n

n∑
i=1

Xi

]
= 1
n2Var

[
n∑
i=1

Xi

]

= 1
n2

n∑
i=1

Var [Xi] . by independence

= 1
n2

n∑
i=1

σ2 = 1
n
σ2.

Therefore, the variance shrinks proportionally to the number of samples. However, this
does not give us enough information about how close X̄ is to the true mean µ. For this, we
use concentration inequalities in the next section.

You might wonder why we care about the bias and variance of our estimator. One reason
is simply that once we start thinking about our sample average estimator as a random
variable, it is useful to know statistics about the random variable, like its expectation and
variance. Another reason is that it helps us reason about the expected mean-squared error
of our estimator, as we discuss in Section 3.5.

3.2 Concentration inequalities
Our goal is to obtain a confidence interval around our estimate, to obtain a measure of
confidence in our estimate, and to show consistency. More specifically, we would likely be
able to say that for any ε > 0, there exists δ ≥ 0 such that

Pr
(∣∣∣X̄ − E[X̄]

∣∣∣ ≥ ε) ≤ δ. (3.3)

In other words, we want a small probability δ that X̄ deviates by ε from the mean E[X̄].
We want the interval given by ε to be small—and of course δ to be small—so that we can
be confident in our estimate E[X̄]. This probability tells us that E[X̄] ∈ [X̄ − ε, X̄ + ε]
with high probability, that is with probability 1− δ. You can see this is the case by notic-
ing that Equation (3.3) can equivalently be written Pr

(∣∣∣X̄ − E[X̄]
∣∣∣ ≤ ε) ≥ 1 − δ because
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Pr
(∣∣∣X̄ − E[X̄]

∣∣∣ ≤ ε) = 1− Pr
(∣∣∣X̄ − E[X̄]

∣∣∣ ≥ ε) and that∣∣∣X̄ − E[X̄]
∣∣∣ ≥ ε =⇒ −ε ≤ E[X̄]− X̄ ≤ ε

=⇒ X̄ − ε ≤ E[X̄] ≤ X̄ + ε . Added X̄ to all three equations.

Concentration inequalities let us characterize δ for any given ε, or ε for a given δ. We
will discuss two common concentration inequalities: Hoeffding’s inequality and Chebyshev’s
inequality. The second applies to more general settings. Let’s start with Hoeffding’s in-
equality. Assume we have independent and identically distributed (i.i.d.) bounded random
variables X1, . . . , Xn, such that a ≤ Xi ≤ b for some a, b ∈ R. Then Hoeffding’s inequality
states that for any ε > 0

Pr(|X̄ − E[X̄]| ≥ ε) ≤ 2 exp
(
− 2nε2

(b− a)2

)
.

For a given ε, we have δ = 2 exp(−2nε2/(b − a)2). In many cases, we would actually like
to determine the interval around E[X̄], for some confidence level δ. We can solve for ε in
terms of δ, to get

δ = 2 exp(−2nε2/(b− a)2) =⇒ ε = (b− a)

√
ln(2/δ)

2n .

We get that with probability 1− δ,
∣∣∣X̄ − E[X̄]

∣∣∣ ≤ ε = (b− a)
√

ln(2/δ)
2n .

Example 8: Let’s assume you have n i.i.d. random variables, with a = 0 and b = 1.
Imagine you get n = 30 samples, with X̄ = 0.6. Now you want to get a 95% confidence
interval around the true mean, i.e., δ = 0.05. Then the resulting interval, using Hoeffding’s
inequality, has ε = (1− 0)

√
ln(2/0.05)

2×30 = 0.248. �

Hoeffding’s inequality assumes bounded random variables, but there are other concen-
tration inequalities for unbounded random variables. Chebyshev’s inequality let’s us say
that, for i.i.d. random variables X1, . . . , Xn with variance σ2,

Pr(|X̄ − E[X̄]| ≥ ε) ≤ σ2

nε2
. (3.4)

Again, we can solve for ε in terms of δ, to get

δ = σ2

nε2
=⇒ ε =

√
σ2

δn
.

For this setting, where we know the variance by the variables are not bounded between
some a and b, we still get an interval proportional to

√
1/n. Notice that the conditions

for Chebyshev’s inequality are actually less stringent, because the variance of any random
variable bounded between [a, b] is at most σ2 = 1

12(b− a)2. So, Chebyshev’s can be applied
to such random variables, by using this upper bound on the variance. However, Hoeffding’s
bound is a better choice, since it gives a tighter bound.
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3.3 Consistency
Chebyshev’s inequality let’s us easily show consistency of the sample average estimator.
Consistency means that

X̄ → µ as n→∞. (3.5)

As n gets larger, ε =
√

σ2

δn gets smaller and smaller. In fact,√
σ2

δn
→ 0 as n→∞. (3.6)

This means that for arbitrarily small δ, X̄ → E[X̄] as n→∞. Because the sample average
is unbiased, we know E[X̄] = µ, and so X̄ → µ. This convergence in probability is also
called the (weak) law of large numbers.

3.4 Rate of Convergence and Sample Complexity
The sample complexity n is the number of samples needed to obtain an ε accurate estimate.
Our goal is to make the sample complexity small, so that we can get a good estimate with
as few samples as possible—to be data efficient. The sample complexity is determined both
by the properties of the data and by our estimator. We can improve the sample complexity
by using smarter estimators, but will inherently have higher sample complexity for certain
types of data. For example, if the data has high variance, the bound above tells us that
we need more samples to obtain an accurate estimate. But, we can reduce the sample
complexity if we could bias or initialize our sample average estimate to be closer to the true
mean.

The convergence rate indicates how quickly the error in our estimate decays, in terms
of the number of samples. For example, using Chebyshev’s inequality, we obtained a con-
vergence rate of O(1/

√
n):

∣∣∣X̄ − E[X̄]
∣∣∣ ≤

√
σ2

δn
with high probability 1− δ.

This concentration inequality—Chebyshev’s inequality—makes few assumptions about the
random variables. For example, it does not make any distributional assumptions about
each Xi. We can actually reduce the sample complexity, by making stronger assumptions
on the Xi.

To see why, let’s revisit Equation (3.3), but now assume that the Xi are i.i.d. Gaussian
random variables, with variance σ2 and unknown mean µ. We know that X̄−µ is zero-mean
Gaussian with variance σ2/n. We can look at the tails of the Gaussian to determine that,
say for δ = 0.05, ε = 1.96σ/

√
n

Pr(|X̄ − µ| ≥ 1.96σ/
√
n) = 0.95

Chebyshev’s inequality would give a larger number of ε = 4.47σ/
√
n. This is 2.28x larger

than if we knew the distribution of the Xi were Gaussian, showing what we lose when we
do not know the distribution and so cannot take advantage of that information to improve
the confidence interval.
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Notice that though sample complexity is better, the convergence rate is still O(1/
√
n).

Does this mean we are always stuck with this rate? For many distributions, yes, but
for certain distributions, we can actually get even faster convergence. For example, for
independent Bernoulli Xi, the Chernoff bound—yes, yet another concentration inequality—
let’s us obtain a convergence rate of O(1/n), which is significantly faster.

3.5 Mean-Squared Error and Bias-Variance
In the above treatment, we assumed our estimator was unbiased. But, we do not actually
have to require that our estimator be unbiased. Rather, our ultimate goal is to get an
estimator Y for the true mean µ, that is as close to this true value as possible. In some
cases, a biased estimator might actually be closer to µ, than an unbiased one.

To see why, let’s characterize the squared distance between our estimator Y and µ:
(Y − µ)2. Because Y is random, this difference is random. So instead we can ask: what is
the expected squared error of our estimator Y , across all possible datasets?

E[(Y − µ)2]
= E[(Y − E[Y ] + E[Y ]− µ)2] . Let b = Bias(Y ) = E[Y ]− µ

= E[
(
(Y − E[Y ]) + b

)2]
= E[(Y − E[Y ])2 + 2b(Y − E[Y ]) + b2]
= E[(Y − E[Y ])2] + E[2b(Y − E[Y ])] + E[b2] . By linearity of expectation
= Var[Y ] + 2bE[(Y − E[Y ])] + b2 . By definition Var[Y ] = E[(Y − E[Y ])2]

and constants come out of expectations
= Var[Y ] + 2b(E[Y ]− E[Y ]) + b2 . By linearity of expectation
= Var[Y ] + Bias(Y )2

Therefore the mean squared error (MSE) is composed of the variance of Y and the bias of Y .
The estimator is unbiased, then it is simply due to the variance of Y . If the dataset is small,
for example, then the variance of Y is likely higher and the expected squared error (the
MSE) is high due to insufficient samples. On the other extreme, we can get an estimator
that has minimal variance: an estimator that always returns 0. This estimator, though,
is clearly biased and so will have a high MSE due to a high bias. There are estimators
in-between, and in some cases it can be worth having an estimator with a little bit of bias,
to help reduce the variance. We see this in the next example.

Example 9: Let’s define a biased estimator, Y = 1
n+100

∑n
i=1Xi. This estimator is biased

because

E[Y ] = E[ 1
n+ 100

n∑
i=1

Xi]

= 1
n+ 100

n∑
i=1

E[Xi]

= n

n+ 100µ 6= µ
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The variance of this estimator, however, is smaller than the sample average estimator:

Var[Y ] = Var[ 1
n+ 100

n∑
i=1

Xi]

= 1
(n+ 100)2Var[

n∑
i=1

Xi] . Var(cX) = c2Var(X)

= 1
(n+ 100)2

n∑
i=1

Var[Xi] . i.i.d. Xi

= n

(n+ 100)2σ
2

You can interpret this estimator as if it saw 100 samples of zeros, and then starting seeing
real data X1, X2, . . . , Xn, i.e, Y = 1

n+100 [
∑1
i=1 000 +

∑n
i=1Xi]. It is skewed towards the

value zero, which could introduce bias if µ 6= 0. But, it also has lower variance since it
effectively saw 100 consistent samples corresponding to zero.

Intuitively, if the true mean µ is near zero, the bias introduced is minimal and we can
get significant gains from the variance reduction. If µ is far from zero, we might incur a big
penalty for the bias. Assume σ = 1.0, and n = 10. Let’s compare the MSE for the sample
average estimator X̄ and for the estimator Y .

Case 1: µ = 0.1. Then, using the results for the bias and variance of the sample average
estimator from Section 3.1 we have

MSE(X̄) = E[(X̄ − µ)2]
= Var[X̄] + Bias(X̄)2 . Bias(X̄) = 0

= Var[X̄] . Var(X̄) = σ2

n

= 1
10 . σ = 1.0, n = 10

MSE(Y ) = E[(Ȳ − µ)2]
= Var[Y ] + Bias(Y )2

= n

(n+ 100)2σ
2 + ( n

n+ 100µ)2

= 10
(110)2 + ( 10

1100.01)2 ≈ 9× 10−4

In this case, where µ is not too far from 0, the MSE of Y is much lower than of the sample
average estimator.

Case 2: µ = 5 gives

MSE(X̄) = Var[X̄] = 1
10
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which is the same because X̄ is unbiased so its MSE does not depend on the value of µ, and

MSE(Y ) = Var[Y ] + Bias(Y )2

= n

(n+ 100)2σ
2 + ( n

n+ 100µ)2

= 10
(110)2 + ( 10

1105)2 ≈ 0.2

In this case, where µ is far from 0, the MSE of Y is much higher than the sample average
estimator. The amount of bias introduced is higher, than the gains we obtained from having
a lower variance. �

This example illustrates an important phenomenon in machine learning. We often inject
some amount of prior knowledge into our learning systems. That prior knowledge often
biases the solution, since it changes the solution but is not based on the actual given
data. If that prior knowledge is helpful, it can often help constrain the space—and reduce
variance—and so make the MSE smaller, even if some bias is incurred. On the other hand,
if that prior knowledge is wrong, then it can incur too much bias. In the example above,
the prior knowledge was that the mean was likely close to zero. If that prior assumption is
correct, then we can get a good estimator with much less data. If the prior assumption is
wrong, though, it can significantly degrade performance.

The above example was all about the small sample setting. Once n gets very big, the
bias in Y is washed away.

Exercise 5: Show that Y is consistent. �
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Chapter 4

Introduction to Optimization

Much of machine learning deals with learning functions by finding the optimal function
according to an objective. For example, one may be interested in finding a function f : Rd →
R that minimizes the squared differences to some targets for all the samples:

∑n
i=1(f(xi)−

yi)2. To find such a function, you need to have a basic grasp of optimization techniques.
In this chapter, we discuss basic optimization tools, for generic smooth objectives. Many

of the algorithms in machine learning rely on a simple approach: gradient descent. We first
discuss how to minimize objectives using both first and second-order gradient descent. This
overview covers only a small part of optimization, but fortunately, many machine learning
algorithms are based on these simple optimization approaches.

4.1 The basic optimization problem and stationary points

A basic optimization goal is to select a set of parameters w ∈ Rd to minimize a given
objective function c : Rd → R

min
w∈Rd

c(w)

For example, to obtain the parameters w for linear regression that minimizes the squared
differences, we use c(w) =

∑n
i=1(〈xi,w〉 − yi)2, for dot product

〈xi,w〉 =
d∑
j=1

xijwj .

We use the term objective here, rather than error, since error has an explicit connotation
that the function is inaccurate. Later we will see that objectives will include both error
terms—indicating how accurately they recreate data—as well as terms the provide other
preferences on the function. Combining these terms with the error produces the final
objective we would like to minimize. For example, for linear regression, we will optimize
a regularized objective, c(w) =

∑n
i=1(〈xi,w〉 − yi)2 + w2

2 where the second term encodes a
preference for smaller coefficients w2.

The goal then is to find w that minimizes the objective. The most straightforward,
naive solution could be to do a random search: generate random w and check c(w). If
any newly generated wt on iteration t outperforms the previous best solution w, in that
c(wt) < c(w), then we can set wt to be the new optimal solution. We will assume that our
objectives are continuous, and so can take advantage of this smoothness to design better
search strategies. In particular, for smooth functions, we will be able to use gradient descent,
which we describe in the next section.

Gradient descent enables us to reach stationary points: points w where the derivative—
also called the gradient—is zero. Consider first the univariate case. The derivative tells us
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Local Minima

Global Minima

Saddlepoint

Figure 4.1: Stationary points on a smooth function surface: local minima, global minima
and saddlepoints.

the rate of change of the function surface at a point w. When the derivative of the objective
is zero at w ∈ R, i.e., d

dwc(w) = 0, this means that locally the function surface is flat. Such
points correspond to local minima, local maxima and saddlepoints, as shown in Figure 4.1.

For example, assume again that we are doing linear regression, with only one feature
and so only one weight w ∈ R. The derivative of the objective c(w) =

∑n
i=1(xiw − yi)2 is

d

dw
c(w) = d

dw

n∑
i=1

(xiw − yi)2

=
n∑
i=1

d

dw
(xiw − yi)2

=
n∑
i=1

2(xiw − yi)xi

where the last step follows from the chain rule. Our goal is to find w such that d
dwc(w) = 0;

once we find such a stationary point, we can then determine if it is a local minimum,
local maximum or saddlepoint. Because this objective is convex, we in fact know that all
stationary points must be global minima, and so we would not need to do this check. We
discuss this further in the last section, where we discuss some properties of objectives.

4.2 Gradient descent
The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
on the function surface. We begin by considering the univariate setting, with w ∈ R. A
function c(w) in the neighborhood of point w0, can be approximated using the Taylor series
as

c(w) =
∞∑
n=0

c(n)(w0)
n! (w − w0)n,
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where c(n)(w0) is the n-th derivative of function c(w) evaluated at point w0. This assumes
that c(w) is be infinitely differentiable, but in practice we will take such polynomial approx-
imations for a finite n. A second-order approximation to this function uses the first three
terms of the series as

c(w) ≈ ĉ(w) = c(w0) + (w − w0)c′(w0) + 1
2(w − w0)2c′′(w0).

A stationary point of this ĉ(w) can be easily found by finding the first derivative and setting
it to zero

c′(w) ≈ c′(w0) + (w − w0)c′′(w0) = 0.

Solving this equation for w gives us

w1 = w0 −
c′(w0)
c′′(w0) .

Locally, this new w1 will be an improvement on w0, and will be a stationary point of this
local approximation ĉ. Moving (far enough) from w0, however, makes this local second-
order Taylor series inaccurate. We would need to check the local approximation at this new
point w1, to determine if we can further improve locally. Therefore, to find the optimal w,
we can iteratively apply this procedure

wt+1 = wt −
c′(wt)
c′′(wt)

. (4.1)

constantly improving wi until we reach a point where the derivative is zero, or nearly zero.
This method is called the Newton-Raphson method, or second-order gradient descent.

In first-order gradient descent, the approximation is worse, where we no longer use the
second derivative. Instead, when taking a first-order approximation, we know that we are
ignoring O((w − w0)2) terms, and so the local approximation becomes

c(w) ≈ ĉ(w) = c(w0) + (w − w0)c′(w0) + 1
2η (w − w0)2

for some constant 1
η reflecting the magnitude of the ignored O((w − w0)2) terms. The

resulting update is then, for step-size ηt

wt+1 = wt − ηtc′(wt). (4.2)

From this, one can see that, given access to the second derivative, a reasonable choice for
the stepsize is ηt = 1

c′′(wt) .
We can similarly obtain such rules for multivariate variables. Gradient descent for

c : Rd → R consists of the update

wt+1 = wt − ηt∇c(wt). (4.3)

where
∇c(wt) =

(
∂c

∂w1
(wt),

∂c

∂w2
(wt), ...,

∂c

∂wd
(wt)

)
∈ Rd

is the gradient of function c evaluated at wt. Each partial derivative ∂c
∂wj

(wt) indicates how
the function c changes if all the variables in wt are held constant except for the j element.
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(a) Step-size too small (b) Step-size too big (c) Adaptive step-size

Figure 4.2: Different optimization paths, due to different stepsize choices.

As in the single variable setting, the gradient gives a descent direction where stepping (a
sufficiently small step) in that direction will decrease the function value. If the gradient is
zero, then we are already at a stationary point. We can also similarly derive second-order
updates for the multivariate setting, but will only use first-order approaches here with well
chosen stepsizes.

4.3 Selecting the step-size

An important part of (first-order) gradient descent is to select the step-size. If the step-size
is too small, then many iterations are required to reach a stationary point (Figure 4.2(a));
If the step-size is too large, then you are likely to oscillate around the minimum (Figure 4.2
(b)). What we really want is an adaptive step-size (Figure 4.2 (c)), that likely starts larger
and then slowly reduces over time as a stationary point is approached.

The basic method to obtain adaptive step-sizes is to use line search. The idea springs
from the following goal: we would like to obtain the optimal step-size according to

min
η∈R+

c(wt − η∇c(wt))

The solution to this optimization corresponds to the best scalar stepsize we could select, for
the current point wt with descent direction −∇c(wt). Solving this optimization would be
too expensive; however, we can find approximate solutions quickly. One natural choice is
to use a backtracking line search, that tries the largest reasonable stepsize ηmax, and then
reduces it until the objective is decreased. The idea is to search along the line of possible
η ∈ (0, ηmax], with the intuition that a large step is good—as long as it does not overshoot.
If it does overshoot, then the stepsize was too large, and should be reduced. The reduction
is typically according to the rule τη for some τ ∈ [0.5, 0.9]. For τ = 0.5, the stepsize
reduces more quickly—halves on each step of the backtracking line search; for τ = 0.9, the
search more slowly backtracks from ηmax. As soon as a stepsize is found that decreases the
objective, it is accepted. We then obtain a new wt, again compute the gradient and start
the line search once again from ηmax.

This basic line search provides some intuition for our goal in adapting the stepsize. One
can, of course, imagine other strategies for selecting the stepsize. We might prefer more
efficient choices, even if they are heuristic. For example, for gt

def= ∇c(wt) with gt,j the
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j-th index into gt, a simple strategy to be robust to big gradients is to use the stepsize
ηt = (1 +

∑d
j=1 |gt,j |)

−1.

Algorithm 1: Line Search(wt, c,g = ∇c(wt))
1: Optimization parameters: ηmax = 1.0, τ = 0.7, tolerance← 10e−4

2: η ← ηmax
3: w← wt

4: obj← c(w)
5: while number of backtracking iterations is less than maximum iterations do
6: w← wt − ηg
7: // Ensure improvement is at least as much as tolerance
8: If c(w) < obj - tolerance then break
9: // Else, the objective is worse and so we decrease stepsize

10: η ← τη
11: if maximum number of iterations reached then
12: // Could not improve solution
13: return wt, η = 0
14: return w, η

4.4 Optimization properties
There are several optimization properties to keep in mind when reading this handbook,
which we highlight here.

Maximizing versus minimizing We have so far discussed the goal of minimizing an
objective. An equivalent alternative is to maximize the negative of this objective.

argmin
w∈Rd

c(w) = argmax
w∈Rd

−c(w)

where argmin returns w that produces the minimum value of c(w) and argmax returns
w that produces the maximum value of −c(w). The actual min and max values are not
the same, since for a given optimal solution, c(w) 6= −c(w). We opt to formulate each of
our optimizations as a minimization, and do gradient descent. It would be equally valid,
however, to formulate the optimizations as maximizations, and do gradient ascent.

Convexity A function c : Rd → R is said to be convex if for any w1,w2 ∈ Rd and
t ∈ [0, 1],

c(tw1 + (1− t)w2) ≤ tc(w1) + (1− t)c(w2) (4.4)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Convexity is
an important property, because it means that every stationary point is a global minimum.
Therefore, regardless of where we start our gradient descent, with appropriately chosen
stepsize and sufficient iterations, we will reach an optimal solution.
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A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function −c is a
concave function.

Uniqueness of the solution We often care if there is more than one solution to our
optimization problem. In some cases, we care about identifiability, which means we can
identify the true solution. If there is more than one solution, one might consider that
the problem is not precisely posed. For some problems, it is important or even necessary
to have identifiability (e.g., estimating the percentage of people with a disease) whereas
for others we simply care about finding a suitable (predictive) function f that reasonably
accurately predicts the targets, even if it is not the unique such function. We will not
consider identifiability further in this document, but it is important to be cognizant of if
your objective has multiple solutions.

Equivalence under a constant shift Adding or multiplying by a constant a 6= 0 does
not change the solution

argmin
w∈Rd

c(w) = argmin
w∈Rd

a c(w) = argmin
w∈Rd

c(w) + a.

You can see why by taking the gradient of all three objectives and noticing that the gradient
is zero under the same conditions

∇a c(w) = 0 ⇐⇒ a∇c(w) = 0 ⇐⇒ ∇c(w) = 0

and
∇(c(w) + a) = 0 ⇐⇒ ∇c(w) = 0.
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Chapter 5

Formalizing Parameter Estimation

In probabilistic modeling, we are typically presented with a set of observations and the
objective is to find a model, or function, f̂ that shows good agreement with the data and
respects certain additional requirements. We shall roughly categorize these requirements
into three groups: (i) the ability to generalize well, (ii) the ability to incorporate prior
knowledge and assumptions into modeling, and (iii) scalability. First, the model should
be able to stand the test of time; that is, its performance on the previously unseen data
should not deteriorate once this new data is presented. Models with such performance are
said to generalize well. Second, f̂ must be able to incorporate information about the model
space F from which it is selected and the process of selecting a model should be able to
accept training “advice” from an analyst. Finally, when large amounts of data are available,
learning algorithms must be able to provide solutions in reasonable time given the resources
such as memory or CPU power. In summary, the choice of a model ultimately depends on
the observations at hand, our experience with modeling real-life phenomena, and the ability
of algorithms to find good solutions given limited resources.

An easy way to think about finding the “best” model is through learning parameters
of a distribution. Suppose we are given a set of observations D = {xi}ni=1, where xi ∈ R
and have knowledge that the xi are i.i.d. from a Gaussian distribution. In this case, the
problem of finding the best model can be seen as finding the best parameters µ∗ and σ∗:
the problem can be seen as parameter estimation. We call this process estimation because
the typical assumption is that the data was generated by an unknown model from F whose
parameters we are trying to recover from data. We will formalize parameter estimation
using probabilistic techniques and will subsequently find solutions through optimization,
occasionally with constraints in the parameter space.

5.1 MAP and Maximum Likelihood Estimation

Imagine you observe a dataset of observations D = {xi}ni=1. The data is drawn from some
true distribution p∗, but that distribution is unknown to you. Instead, all you know is
that the distribution is in a set of possible distributions, F , sometimes called the hypothesis
space or function class. For example, F could be the family of all univariate Gaussian
distributions:

F = {N (µ, σ2) | for any µ ∈ R and σ ∈ R+}.

The true distribution has parameters µ∗ and σ∗; using the data, we would like to find µ
and σ as close to these as possible.

The idea behind maximum a posteriori (MAP) estimation is to find the most probable
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model for the observed data. Given the data set D, we formalize the MAP solution as

fMAP = argmax
f∈F

p(f |D)

where p(f |D) is called the posterior distribution of the model given the data. In discrete
model spaces, p(f |D) is the probability mass function and the MAP estimate is exactly the
most probable model. Its counterpart in continuous spaces is the model with the largest
value of the posterior density function. Note that we use words model, which is a function,
and its parameters, which are the coefficients of that function, somewhat interchangeably.
For example, above, we could have equivalently considered F = {(µ ∈ R, σ ∈ R+)}. We
will typically reason directly about the parameter space, or function space, rather than
indirectly about the models or probabilities that they parameterize.

To calculate the posterior distribution we start by applying the Bayes rule as

p(f |D) = p(D|f)p(f)
p(D) , (5.1)

where p(D|f) is called the likelihood function, p(f) is the prior distribution of the model,
and p(D) is themarginal distribution of the data. Notice that we use D for the observed data
set, but that we usually think of it as a realization of a multidimensional random variable
D drawn according to some distribution p(D). Using the formula of total probability, we
can express p(D) as

p(D) =


∑
f∈F p(D|f)p(f) f : discrete

´
F p(D|f)p(f)df f : continuous

Therefore, the posterior distribution over f can be fully described using the likelihood and
the prior. Computing this prior, though, can be prohibitively expensive. For example, it
could require the estimation of an integral over all possible models f .

Fortunately, finding fMAP can be greatly simplified because p(D) in the denominator
does not affect the solution. This is because p(D) is the same regardless of f in the maxi-
mization, and so scaling by p(D) does not change the relative ordering

max
f∈F

p(D|f)p(f)
p(D) = 1

p(D) max
f∈F

p(D|f)p(f)

=⇒ argmax
f∈F

p(D|f)p(f)
p(D) = argmax

f∈F
p(D|f)p(f).

For this reason, we often write

p(f |D) = p(D|f) · p(f)
p(D)

∝ p(D|f) · p(f),

where ∝ is the proportionality symbol. And, we find the MAP solution by solving the
following optimization problem

fMAP = argmax
f∈F

p(D|f)p(f).
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In some situations we may not have a reason to prefer one model over another and can
think of p(f) as a constant over the model space F . Then, MAP reduces to the maximization
of the likelihood function:

fMLE = argmax
f∈F

p(D|f).

This solution is called the maximum likelihood (MLE) solution. Formally speaking, the
assumption that p(f) is constant is problematic because a uniform distribution cannot be
always defined (say, over R), though there are some solutions to this issue using improper
priors. Nonetheless, it is useful to think of MLE as a special case of MAP estimation.

Example 10: Suppose data set D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from a Poisson
distribution with a fixed but unknown parameter λ0. Find a maximum likelihood estimate
of λ0.

The probability mass function of a Poisson distribution is expressed as p(x|λ) = λxe−λ/x!,
with some parameter λ ∈ R+. We will estimate this parameter as

λMLE = argmax
λ∈(0,∞)

p(D|λ). (5.2)

We can write the likelihood function as

p(D|λ) = p({xi}ni=1 |λ)

=
n∏
i=1

p(xi|λ)

where the probability breaks up into individual probabilities of each xi because the data
is i.i.d. (the random variables are independent). To find λ that maximizes the likelihood,
we will first take a logarithm (a monotonic function) to simplify the calculation; then find
its first derivative with respect to λ; and finally equate it with zero to find the maximum.
Specifically, we express the log-likelihood ln p(D|λ) as

ln p(D|λ) = ln
n∏
i=1

p(xi|λ)

=
n∑
i=1

ln p(xi|λ)

= lnλ
n∑
i=1

xi − nλ−
n∑
i=1

ln (xi!)

because1

ln p(xi|λ) = lnλxie−λ/(xi)!
= lnλxi + ln e−λ − ln xi!
= xi lnλ− λ− ln xi!.

1Recall that for scalars a, b > 0, (i) ln(ab) = ln a + ln b (ii) ln(a/b) = ln a− ln b and (iii) ln ab = b ln a
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Now in this simpler form, we proceed with computing the derivative

∂ ln p(D|λ)
∂λ

= 1
λ

n∑
i=1

xi − n.

Solving for λ such that ∂ ln p(D|λ)
∂λ = 0 gives us a stationary point of this problem, and we get

λMLE = 1
n

∑n
i=1 xi. We can substitute n = 6 and values from D to compute the solution as

λMLE = 1
n

n∑
i=1

xi = 5.5

which is simply a sample mean.
The second derivative of this log likelihood is always negative because λmust be positive.

The second derivative is −λ−2∑n
i=1 xi which is < 0 for this λMLE; thus, the previous

expression indeed maximizes the likelihood. Note that to properly maximize this loss, we
also need to ensure the constraint λ ∈ (0,∞) is enforced. Because the solution above is
in the constraint set, we know we have the correct solution to Equation (5.2); however, in
other situations, we will have to explicitly enforce constraints in the optimization, as we
will discuss later.

�

Example 11: Let D = {2, 5, 9, 5, 4, 8} again be an i.i.d. sample from Poisson(λ0), but
now we are also given additional information. Suppose the prior knowledge about λ0 can
be expressed using a gamma distribution with parameters k = 3 and θ = 1. Find the MAP
estimate of λ0.

First, we write the probability density function of the gamma distribution for our prior

p(λ) = λk−1e−
λ
θ

θkΓ(k) ,

where λ > 0. Γ(k) is the gamma function that generalizes the factorial function; when k is
an integer, we have Γ(k) = (k − 1)!. The MAP estimate of the parameters can be found as

λMAP = argmax
λ∈(0,∞)

p(D|λ)p(λ).

As before, we take the log to simplify calculations to get

ln p(D|λ)p(λ) = ln p(D|λ) + ln p(λ)

=
n∑
i=1

ln p(xi|λ) + ln p(λ).

We have already simplified the first term in the previous example. For the log of the prior
distribution, we have

ln p(λ) = ln
(
λk−1e−

λ
θ

)
− ln(θkΓ(k))

= (k − 1) lnλ− λ

θ
− ln(θkΓ(k)).
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The last term is constant with respect to λ; so when we take the derivative it will disappear
and we will be able to avoid computing it. Plugging everything back in

ln p(D|λ)p(λ) = lnλ
n∑
i=1

xi − nλ−
n∑
i=1

ln (xi!) + (k − 1) lnλ− λ

θ
− ln(θkΓ(k))

and taking the derivative gives
∂ ln p(D|λ)p(λ)

∂λ
= 1
λ

n∑
i=1

xi − n+ k − 1
λ
− 1
θ

because ∂ ln p(λ)
∂λ

= k − 1
λ
− 1
θ

Once again setting the derivative to zero and solving for λ gives

λMAP = k − 1 +
∑n
i=1 xi

n+ 1
θ

= 5 for the dataset D
�

A quick look at λMAP and λMLE suggests that as n grows, both numerators and denomi-
nators in the expressions above become increasingly more similar. In fact, it is a well-known
result that, in the limit of infinite samples, both the MAP and MLE converge to the same
model, f , as long as the prior does not have zero probability (or density) on f . This re-
sult shows that the MAP estimate approaches the MLE solution for large data sets. In
other words, large data diminishes the importance of prior knowledge. This is an important
conclusion because it simplifies mathematical apparatus necessary for practical inference.

To get some intuition for this result, we will show that the MAP and MLE estimates
converge to the same solution for the above example with a Poisson distribution. Let sn =∑n
i=1 xi, which is a sample from the random variable Sn =

∑n
i=1Xi. If limn→∞ sn/n

2 = 0
(i.e., sn does not grow faster than n2), then

|λMAP − λMLE| =
∣∣∣∣k − 1 + sn
n+ 1/θ

− sn
n

∣∣∣∣
=
∣∣∣∣ k − 1
n+ 1/θ

− sn
n(n+ 1/θ)

∣∣∣∣
≤ |k − 1|
n+ 1/θ

+ sn
n(n+ 1/θ) −−−→

n→∞
0

Note that if limn→∞ sn/n
2 6= 0, then both estimators go to ∞; however, such a sequence

of values has an essentially zero probability of occurring. Consistency theorems for MLE
and MAP estimation state that convergence to the true parameters occurs “almost surely”
or “with probability 1” to indicate that these unbounded sequences constitute a set of
measure-zero, under certain reasonable conditions (for more, see [11, Theorem 9.13]).

Example 12: Let D = {xi}ni=1 be an i.i.d. sample from a univariate Gaussian distribution.
Our goal is to find the maximum likelihood estimates of the parameters. We start by forming
the log-likelihood function

ln p(D|µ, σ) = ln
n∏
i=1

p(xi|µ, σ)

= n ln 1√
2π

+ n ln 1
σ
−
∑n
i=1 (xi − µ)2

2σ2 .
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We compute the partial derivatives of the log-likelihood with respect to all parameters as

∂

∂µ
ln p(D|µ, σ) =

∑n
i=1 (xi − µ)

σ2

and

∂

∂σ
ln p(D|µ, σ) = −n

σ
+
∑n
i=1 (xi − µ)2

σ3 .

From here, we can proceed to derive that

µMLE = 1
n

n∑
i=1

xi

and

σ2
MLE = 1

n

n∑
i=1

(xi − µMLE)2 .

�

MAP and MLE estimates are called point estimates. These estimates contrast Bayesian
estimates, which estimate the entire posterior distribution or confidence intervals for the
parameters, as we discuss in the next section.

5.2 Bayesian estimation
Maximum a posteriori and maximum likelihood approaches report the solution that corre-
sponds to the mode of the posterior distribution and the likelihood function, respectively.
This approach, however, does not consider the possibility of skewed distributions or mul-
timodal distributions for the posterior distribution. Bayesian estimation addresses those
concerns.

For simplicity in this section, let’s assume we are estimating one parameter for a distri-
bution, θ. The main idea in Bayesian statistics is minimization of the posterior risk

c(θ̂) =
ˆ
F
diff(θ, θ̂)p(θ|D)dθ,

where θ̂ is our estimator and diff(θ, θ̂) is some difference between two models. When
diff(θ, θ̂) = (θ̂ − θ)2, we can find the θ̂ that minimizes the posterior risk by finding a
stationary point, i.e., taking the derivative and setting it to zero

∂

∂θ̂
c(θ̂) = 2

ˆ
F

(θ̂ − θ)p(θ|D)dθ

= 2θ̂ − 2
ˆ
F
θ · p(θ|D)dθ = 0

From this, we can see that the optimal minimizer θB, called the Bayes estimator, is

θB =
ˆ
F
θ · p(θ|D)dθ = E[θ|D]
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This expectation is with respect to the entire posterior distribution p(θ|D). Bayesian
approaches typically require estimation of this posterior. We can compute the posterior,
because it can be expressed in terms of known distributions using Bayes rule

p(θ|D) = p(D|θ)p(θ)
p(D) .

The difficulty, though, is in computing p(D). For MAP, we did not need to estimate p(D)
because it was a constant that did not affect finding the most likely parameters. Now, we
explicitly need to estimate this term, which we can do using

p(D) =
ˆ
p(D|θ)p(θ)dθ

This term, though, is typically much more complex to obtain that either p(D|θ) or p(θ).
In general, computing either the posterior p(θ|D) or the posterior mean usually involves

solving complex integrals. In some situations, these integrals can be solved analytically; in
others, numerical integration is necessary. There are classes of distributions for which we
know a simple form for the posterior. We discuss this below—with the concept of conjugate
priors—but first give an example of computing the Bayes estimator.

Example 13: Let D = {2, 5, 9, 5, 4, 8} yet again be an i.i.d. sample from Poisson(λ0).
Suppose the prior knowledge about the parameter of the distribution can be expressed
using a gamma distribution with parameters k = 3 and θ = 1. Let’s find the posterior
distribution and the resulting Bayesian estimate of λ0, that is E[Λ|D].

Let us first write the posterior distribution as

p(λ|D) = p(D|λ)p(λ)
p(D)

= p(D|λ)p(λ)´∞
0 p(D|λ)p(λ)dλ

,

where, as shown in previous examples, we have that

p(D|λ) = λ
∑n

i=1 xi · e−nλ∏n
i=1 xi!

and

p(λ) = λk−1e−
λ
θ

θkΓ(k) .

Before calculating p(D), let us first note thatˆ ∞
0

xα−1e−βxdx = Γ(α)
βα

.

Now, we can derive that

p(D) =
ˆ ∞

0
p(D|λ)p(λ)dλ

=
ˆ ∞

0

λ
∑n

i=1 xi · e−nλ∏n
i=1 xi!

· λ
k−1e−

λ
θ

θkΓ(k) dλ

= Γ(k +
∑n
i=1 xi)

θkΓ(k)
∏n
i=1 xi!(n+ 1

θ )
∑n

i=1 xi+k
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and subsequently that

p(λ|D) = p(D|λ)p(λ)
p(D)

= λ
∑n

i=1 xi · e−nλ∏n
i=1 xi!

· λ
k−1e−

λ
θ

θkΓ(k) ·
θkΓ(k)

∏n
i=1 xi!(n+ 1

θ )
∑n

i=1 xi+k

Γ(k +
∑n
i=1 xi)

=
λk−1+

∑n

i=1 xi · e−λ(n+1/θ) · (n+ 1
θ )
∑n

i=1 xi+k

Γ(k +
∑n
i=1 xi)

.

Though this looks complex, notice that this is actually just a gamma distribution! The
parameters k′, θ′ for this gamma distribution are

k′ = k +
n∑
i=1

xi

θ′ = θ

nθ + 1 = 1
n+ 1/θ .

We know that the expected value of a gamma distribution is kθ, and so we get that

E[Λ|D] =
ˆ ∞

0
λp(λ|D)dλ = k′θ′

= k +
∑n
i=1 xi

n+ 1
θ

= 5.14

which is nearly the same solution as the MAP estimate found in Example 9. �

It is evident from the previous example that selection of the prior distribution has
important implications on calculation of the posterior mean. We have not picked the gamma
distribution by chance; that is, when the likelihood was multiplied by the prior, the resulting
distribution remained in the same class of functions as the prior. Such prior distributions
are called conjugate priors. Conjugate priors simplify the computations in two ways, which
are the primary reason for their consideration. First, in many cases it is non-trivial to
actually derive p(λ|D). Above, we gave you the derivation, but in general it is not easy to
explicitly solve for the integral when computing p(D). Second, by knowing the form of the
resulting distribution, it is easy to obtain statistics about that distribution. For example,
once we knew the posterior was a gamma distribution, it was straightforward to compute
the mean. It is similarly straightforward to obtain the mode or median. Interestingly, in
addition to the Poisson distribution, the gamma distribution is a conjugate prior to the
exponential distribution as well as the gamma distribution itself.

Consider if we did not have a conjugate prior. Imagine if instead we chose an exponential
distribution as the prior for λ. When computing p(D) and p(λ|D), you would simply be
stuck with complex integrals and formulas that do not correspond to any known distribution.
Instead, if you picked the conjugate prior—the gamma distribution—you simply go look up
the known formula for the parameters of the gamma posterior, assuming p(x|θ) is Poisson
and prior p(θ) is gamma with parameters k and θ. You wouldn’t even have to go through
the above derivation; you would simply have been able to immediately know that k′ =
k +

∑n
i=1 xi and θ′ = θ

nθ+1 .
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5.3 Maximum likelihood for conditional distributions
We can also formulate MAP and maximum likelihood problems for conditional distributions.
Recall that a conditional distribution has the form p(y|x), for two random variables Y and
X, where above we considered the marginal distribution p(x) or p(y). For the distributions
above, we asked: what is the distribution over this variable? For a conditional distribution,
we are instead asking: given some auxiliary information, now what is the distribution over
this variable? When the auxiliary information changes, so will the distribution over the
variable. For example, we may want to condition a distribution over sales of a particular
product (Y ) given the current month (X). We expect the distribution over Y to be different,
depending on the month.

Conditional distributions can be from any of the distribution families discussed above,
and we can similarly formulate parameter estimation problems. The parameters, however,
are usually tied to the given variable X. We provide a simple example to demonstrate
this below. Much of the parameter estimation formulations we consider in the remainder
of the book will be for conditional distributions, because in machine learning we typically
have a large number of auxiliary variables (features) and are trying to predict (or learn
the distribution over) targets. In the chapters on regression and classification, we will
demonstrate how many models can be formulated as maximum likelihood for conditional
distributions p(y|x).

Example 14: Assume you are given two random variables X and Y and that you believe
p(y|x) = N (µ = x, σ2) for some unknown σ. Our goal is to estimate this unknown parameter
σ. Notice that the distribution over Y varies, depending on which X value is observed or
given.

We again start by forming the log-likelihood function, now for pairs of n samples D =
(x1, y1), . . . , (xn, yn). We will use the chain rule: p(xi, yi) = p(yi|xi)p(xi).

ln p(D|σ) = ln
n∏
i=1

p(xi, yi|σ)

= ln
n∏
i=1

p(yi|xi, σ)p(xi)

=
n∑
i=1

ln p(yi|xi, σ) + ln p(xi)

=
n∑
i=1

ln 1√
2πσ exp(−(yi − xi)2

2σ2 ) + ln p(xi)

= n ln 1√
2π

+ n ln 1
σ
−
∑n
i=1 (yi − xi)2

2σ2 +
n∑
i=1

ln p(xi).

Notice that we use µ = xi for each normal distribution p(yi|xi, σ). We now compute the
partial derivatives of the log-likelihood with respect to the parameter σ

∂

∂σ
ln p(D|σ) = −n

σ
+
∑n
i=1 (yi − xi)2

σ3 .

Notice that ∂
∂σ

∑n
i=1 ln p(xi) = 0, because σ does not parameterize p(xi). Therefore, to

obtain the optimal σ, we do not need to know or specify the distribution over the random
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variable X. By setting the derivative to zero, to obtain a stationary point, we obtain

σ2
MLE = 1

n

n∑
i=1

(yi − xi)2.

�

Exercise 6: We can also formalize this problem as a MAP problem. To do so, we need to
pick a prior on the parameter σ. Let’s pick a uniform distribution with a relatively narrow
range of [0.5, 2]. Note that though MLE can be though of as MAP with a uniform prior,
this is only the case if we pick a uniform prior that does not restrict the space of feasible
solution. This uniform prior, with range [0.5, 2], is quite restrictive, and so we should get a
different solution from above. Derive σ2

MAP. �

5.45.4 [Advanced] The relationship between maximizing likeli-
hood and Kullback-Leibler divergence

We now investigate the relationship between maximum likelihood estimation and Kullback-
Leibler divergence. Kullback-Leibler divergence between two probability distributions p(x)
and q(x) is defined on X = R as

DKL(p||q) =
ˆ ∞
−∞

p(x) log p(x)
q(x)dx.

In information theory, Kullback-Leibler divergence has a natural interpretation of the inef-
ficiency of signal compression when the code is constructed using a suboptimal distribution
q(x) instead of the correct (but unknown) distribution p(x) according to which the data has
been generated. However, more often than not, Kullback-Leibler divergence is simply con-
sidered to be a measure of divergence between two probability distributions. Although this
divergence is not a metric (it is not symmetric and does not satisfy the triangle inequality)
it has important theoretical properties in that (i) it is always non-negative and (ii) it is
equal to zero if and only if p(x) = q(x).

Consider now a divergence between an estimated probability distribution p(x|θ) and an
underlying (true) distribution p(x|θ0) according to which the data set D = {xi}ni=1 was
generated. The Kullback-Leibler divergence between p(x|θ) and p(x|θ0) is

DKL(p(x|θ0)||p(x|θ)) =
ˆ ∞
−∞

p(x|θ0) log p(x|θ0)
p(x|θ) dx

=
ˆ ∞
−∞

p(x|θ0) log 1
p(x|θ)dx−

ˆ ∞
−∞

p(x|θ0) log 1
p(x|θ0)dx.

The second term in the above equation is simply the (differential) entropy of the true
distribution and is not influenced by our choice of the model θ. The first term, on the other
hand, can be expressed as

ˆ ∞
−∞

p(x|θ0) log 1
p(x|θ)dx = −E[log p(X|θ)]
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Therefore, maximizing E[log p(X|θ)] minimizes the Kullback-Leibler divergence between
p(x|θ) and p(x|θ0). Using the strong law of large numbers, we know that

1
n

n∑
i=1

log p(xi|θ)
a.s.→ E[log p(X|θ)]

when n→∞. Thus, when the data set is sufficiently large, maximizing the likelihood func-
tion minimizes the Kullback-Leibler divergence and leads to the conclusion that p(x|θMLE) =
p(x|θ0), if the underlying assumptions are satisfied. Under reasonable conditions, we can
infer from it that θMLE = θ0. This will hold for families of distributions for which a set of
parameters uniquely determines the probability distribution; e.g., it will not generally hold
for mixtures of distributions but we will discuss this situation later. This result is only one
of the many connections between statistics and information theory.
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Chapter 6

Introduction to Prediction Problems

Machine learning addresses many problem settings, which can sometimes feel overwhelm-
ing. As a non-exhaustive list, these include supervised learning (with classification and
regression); semi-supervised learning; unsupervised learning; completion under missing fea-
tures; structured prediction; learning to rank; statistical relational learning; active learning;
and temporal prediction (with time series prediction and policy evaluation in reinforce-
ment learning and online learning). For some of these settings, such as active learning and
reinforcement learning, the data collection is a central part of the algorithm and can signif-
icantly determine the quality of the learned predictive models. Most other settings assume
that data has been collected—without our ability to influence that collection—and now we
simply need to analyze that data and learn the best predictors that we can. In this passive
setting, we can either assume that the data is i.i.d.—which is the most common—or that
there are dependencies between data points—such as in time series prediction or statistical
relational learning. There are also settings where the data is incomplete, say because a user
did not fill in their age.

One ontology, therefore, could consider the following dimensions to categorize machine
learning problems:

1. passive vs. active

2. i.i.d. vs. non-i.i.d.

3. complete vs. incomplete.

As with all ontologies, each problem will not perfectly fit into these categories. Further, it
is likely that most data collection is not completely passive (even if only because the human
modeler influences collection of data), is likely not i.i.d. (even if we intended it to be), and
likely has some missing components. Nonetheless, algorithms will make these assumptions,
to varying degrees, even if the data does not satisfy those assumptions. For the majority of
these notes, we will focus on the simplest setting: passive, i.i.d. and complete.

In this chapter, we will first introduce classification and regression and then discuss
criteria for selecting functions for classification and regression, to motivate the algorithms
developed in later chapters.

6.1 Supervised learning problems

We start by defining a data set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where xi ∈ X is the
i-th input or observation and yi ∈ Y the corresponding target. We usually assume that
X = Rd, in which case xi = (xi1, xi2, . . . , xid) is a d-dimensional vector called an instance
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Figure 6.1: Notation for the dataset. X is an n-by-d matrix, with rows corresponding to
instances and columns to features. y is an n-by-1 vector of targets.

or a sample.1 Each dimension of xj is typically called a feature or an attribute. We will
often organize the dataset into a matrix X ∈ Rn×d where each row corresponds to a sample
xi and each column corresponds to a feature (see Figure 6.1).

The distinction between x and y is due to the fact that we assume that the features are
relatively easy to collect for each object (e.g., by measuring the height of a person or the
square footage of a house), while the target variable is difficult to observe or expensive to
collect (e.g., presence of a disease or the final selling price of a house before it has sold).
Such situations usually benefit from the construction of a computational model that predicts
targets from a set of input values. The model is trained using a set of input observations for
which target values have already been collected. In deployment, we can use this model to
make predictions from easy-to-obtain information—the observation—about hard-to-obtain
information—the targets.

6.1.1 Regression and Classification

The differences in algorithms for prediction problems, with i.i.d. complete data, typically
arises from the properties of the inputs (observations) and the properties of the targets. For
example, we may need to treat text observations—such as those from a set of documents—
differently than a ten-dimensional real-valued observation vector of sensor readings reflecting
the temperature and pressure in a physical system. A simple, and relatively common
strategy, to handle these differences is to map different types of observations—language,
categorical variables and even sequence data—into a Euclidean space where the observation
is re-represented as a real-valued vector. Many prediction algorithms are designed for real-
valued observations, and so standard algorithms can be applied. This question of data
representation is a central problem in machine learning. For this course, we will assume the
observations are already in a convenient form, as a d-dimensional real-valued vector.

The properties of the target are also important, and result in two typical distinctions for
1In statistics, a sample usually refers to a collection of randomly sampled x, rather than a single instance.

It is common in machine learning, though, to use the word sample to mean a single sample, rather than
multiple samples or draws from the distribution.
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prediction problems: classification and regression. Generally speaking, we have a regression
problem when Y is continuous and a classification problem if Y is discrete. In regression
possible target set include Y = R or Y = [0,∞). An example of a regression problem is
shown in Table 6.1.

size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35
x2 3200 9 8.21 245,800 3.1 3.95
x3 825 12 0.34 61,050 112.5 5.10

Table 6.1: An example of a regression problem: prediction of the price of a house in a
particular region. Here, features indicate the size of the house (size) in square feet, the age
of the house (age) in years, the distance from the city center (dist) in miles, the average
income in a one square mile radius (inc), and the population density in the same area
(dens). The target indicates the price a house is sold at, e.g. in hundreds of thousands of
dollars.

In classification we construct a function that predicts discrete class labels; this function
is typically called a classifier. The cardinality of Y in classification problems is usually small,
e.g. Y = {healthy, diseased}. An example of a data set for classification with n = 3 data
points and d = 5 features is shown in Table 6.2.

Classification problems can be further subdivided into multi-class and multi-label prob-
lems. A multi-class problem consists of providing the single label for an input. For example,
for (simple) blood-type with Y = {A,B,AB,O}, a patient can only be labeled with one of
these labels. Within multi-class problems, if there are only two classes, it is called binary
classification, such as the example in Table 6.2. In multi-label, an input can be associated
with more than one label. An example of a multi-label problem is the classification of text
documents into categories such as {sports, medicine, travel, politics}. Here, a single docu-
ment may be related to more than one value in the set; e.g. an article on sports medicine.
The learned function can now return multiple outputs.

Typically, to make the outputs more consistent between these two settings, the output
for both multi-class and multi-label is an indicator vector. For m = |Y|, the prediction for
blood types might be [0 1 0 0] to indicate blood-type B and the prediction for four article
labels could be [1 1 0 0] if it is both an article pertaining to sports and medicine.

wt [kg] ht [m] T [◦C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 −1
x2 75 1.80 37.4 128 85 +1
x3 54 1.56 36.6 110 62 −1

Table 6.2: An example of a binary classification problem: prediction of a disease state for
a patient. Here, features indicate weight (wt), height (ht), temperature (T), systolic blood
pressure (sbp), and diastolic blood pressure (dbp). The class labels indicate presence of a
particular disease, e.g. diabetes. This data set contains one positive data point (x2) and two
negative data points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = −1 indicates absence of disease.
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6.1.2 Deciding how to formalize the problem

Though we separate supervised learning problems into two categories, it is not always
clear cut how a problem should be formalized. For example, consider the output space
Y = {0, 1, 2}. We can treat this as a multi-class classification problem, or we could presume
Y = [0, 2] and learn a regression model. We can then threshold the predictions returned by
the regression model, by rounding them to the closest integer.

How do you decide which problem formulation to use? Though the mathematical proce-
dures in machine learning are precise, deciding how to formulate real-world problem is sub-
tle, and so inherently less clear-cut. The selection of a particular way of modeling depends
on the analyst and their knowledge of the domain as well as technical aspects of learning. In
this example, you could ask: is there inherently an ordering to the outputs {0, 1, 2}? If not,
say they correspond to Prefers apples, Prefers oranges, Prefers bananas, then it
may be a poor choice to model the output as an interval, which often implies ordering.
On the other hand, regression functions can be easier to learn and often produce surpris-
ingly good classification predictions. Further, if there is an ordering to these classes, say
Good, Better, Best, then most classification models— which do not assume an ordering
on the outputs—would not be able to take advantage of this ordering to improve prediction
performance.

Formalizing the problem and selecting the function class, and objective is an important
step in using machine learning effectively. Fortunately, there is a wealth of knowledge,
especially empirically, that can guide this selection. As you learn more about the methods,
combined with some information about structure in your domain, you will become better
at this specification.

6.2 Optimal classification and regression models
Our goal now is to establish the performance criteria that will be used to evaluate predictors
f : X → Y and subsequently define optimal classification and regression models. To do so,
we assume we have access to the true joint distribution p(x, y) and ask what the optimal
prediction would be in this ideal case. The optimal predictor is defined based on a cost
function cost : Y ×Y → [0,∞), where cost(ŷ, y) reflects the cost or penalty for predicting ŷ
when the true target is y. Because X,Y are random, the cost C = cost(f(X), Y ) is also a
random variable, because it is a function of these random variables. Our goal is to minimize
the expected cost. We first consider a few examples of costs, and then derive the optimal
predictors.

6.2.1 Examples of Costs

The costs for classification and regression are usually different. A typical cost function for
classification is

cost(ŷ, y) =


0 when y = ŷ

1 when y 6= ŷ

(6.1)

A more complex cost function might arise in settings where certain inaccurate predictions
are more problematic than others. Let’s consider a concrete example, in a medical domain.
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Suppose our goal is to decide whether a patient with a particular set of symptoms (x) should
be sent for an additional lab test (y = 1 if yes and y = −1 if not), with cost clab, in order to
improve diagnosis. However, if we do not perform a lab test and the patient is later found to
have needed the test for proper treatment, we may incur a significant penalty, say clawsuit.
If clawsuit � clab, as it is expected to be, then the classifier needs to appropriately adjust
its outputs to account for the cost disparity in different forms of incorrect prediction. Here,
the cost is better depicted as a table It is not always possible to define a meaningful cost

Y
-1 (¬Has Disease) 1 (Has Disease)

Ŷ
-1 (¬Has Disease, No Test) 0 1000
1 (Has Disease, Do Test) 1 1

Table 6.3: The cost function for the medical lab, cost(ŷ, y), with clawsuit = 1000 and clab = 1.

function and, thus, a reasonable criterion is to use the default 0-1 loss in Equation (6.1).
In regression, common costs are the squared error

cost(ŷ, y) = (ŷ − y)2 (6.2)

and the absolute error
cost(ŷ, y) = |ŷ − y|. (6.3)

The squared error more heavily penalizes values further away from y than the absolute
error. There are many other costs, that factor in the magnitude of the targets, such as the
percentage error.

6.2.2 Deriving the Optimal Predictors

We begin first by deriving the optimal classifier. We can express the expected cost as
follows, assuming the inputs are continuous real-valued vectors and the targets are from a
discrete set Y and ŷ = f(x) for the given predictor f

E[C] =
ˆ
X

∑
y∈Y

cost(f(x), y)p(x, y)dx

=
ˆ
X
p(x)

∑
y∈Y

cost(f(x), y)p(y|x)dx,

where the integration is over the entire input space X = Rd. Notice that we have to predict
one class for each observation: f(x) can only output one value ŷ in Y. But, the target
is random. Because of this the optimal classifier f∗ may not be able to obtain zero cost.
However, simply by looking at the above equation, we can obtain f∗ = argminE[C], by
picking the best classifier for each x separately

f∗(x) = argmin
ŷ∈Y

E[C|X = x]

= argmin
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|x).
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This classifier is called the Bayes risk classifier.
If we use the 0-1 cost function, in Equation (6.1), the Bayes risk classifier simply becomes

f∗(x) = argmin
ŷ∈Y

∑
y∈Y

cost(ŷ, y)p(y|x)

= argmax
ŷ∈Y

1−
∑
y∈Y

cost(ŷ, y)p(y|x)


= argmax

ŷ∈Y

∑
y∈Y

(1− cost(ŷ, y))p(y|x) . because
∑
y∈Y

p(y|x) = 1

= argmax
ŷ∈Y

∑
y∈Y,y 6=ŷ

0 · p(y|x) +
∑

y∈Y,y=ŷ
1 · p(y|x)

= argmax
y∈Y

p(y|x)

Therefore, if p(y|x) is known or can be accurately learned, we are fully equipped to make
the prediction that minimizes the total cost. In other words, we have converted the problem
of minimizing the expected classification cost or probability of error, into the problem of
learning functions, more specifically learning probability distributions.

The analysis for regression is similar to that for classification. Here too, we are interested
in minimizing the expected cost of prediction of the true target y when a predictor f(x) is
used. The expected cost can be expressed as

E[C] =
ˆ
X

ˆ
Y
cost(f(x), y)p(x, y)dydx.

For simplicity, we will consider the squared error from Equation (7.1)

cost(f(x), y) = (f(x)− y)2,

which results in

E[C] =
ˆ
X

ˆ
Y

(f(x)− y)2p(x, y)dydx

=
ˆ
X
p(x)
ˆ
Y

(f(x)− y)2p(y|x)dy︸ ︷︷ ︸
g(f(x))

dx.

Assuming f(x) is flexible enough to be separately optimized for each unit volume dx, we
see that minimizing E[C] leads us to the problem of finding ŷ for each x to minimize

g(ŷ) =
ˆ
Y

(ŷ − y)2p(y|x)dy.

To find the optimal ŷ, we can solve this minimization problem by finding a stationary point,
the global minimum. To do so, we differentiate g with respect to ŷ and find the point where
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the derivative equals zero

∂g(ŷ)
∂ŷ

= 2
ˆ
Y

(ŷ − y)p(y|x)dy = 0

=⇒ ŷ

ˆ
Y
p(y|x)dy︸ ︷︷ ︸

=1

=
ˆ
Y
yp(y|x)dy

=⇒ ŷ

ˆ
Y
p(y|x)dy︸ ︷︷ ︸

=1

=
ˆ
Y
yp(y|x)dy

=⇒ ŷ =
ˆ
Y
yp(y|x)dy = E[Y |x].

Therefore, the optimal predictor is

f∗(x) = E[Y |x].

Therefore, the optimal regression model in the sense of minimizing the square error between
the prediction and the true target is the conditional expectation E[Y |X = x].2

Exercise 7: We can similarly compute the optimal predictor for the absolute error cost,
in Equation (6.3). Show that the optimal predictor for the absolute error is the conditional
median, Median[Y |X = x]. �

The above has motivated that learning p(y|x) is sensible for classification, to reduce
0-1 classification error. An alternative to directly learning p(y|x) is to instead learn the
class-conditional and prior distributions, p(x|y) and p(y), respectively. Using

p(y|x) = p(x, y)
p(x)

= p(x|y)p(y)
p(x)

∝ p(x|y)p(y)

we can see that these two learning approaches are equivalent in theory, to decide the ŷ with
highest p(y|x). The choice depends on our prior knowledge and/or preferences. Models
obtained by directly estimating p(y|x) are called discriminative models and models obtained
by directly estimating p(x|y) and p(y) are called generative models.

6.2.3 Reducible and Irreducible Error

Having found the optimal regression model, we can now write the expected cost in the cases
of both optimal and suboptimal models f(x). That is, we are interested in expressing E[C]
when

2It may appear that in the above equations, setting f(x) = y would always lead to E[C] = 0. Unfor-
tunately, this would be an invalid operation because for a single input x there may be multiple possible
outputs y and they can certainly appear in the same data set. To be a well-defined function, f(x) must
always have the same output for the same input. E[C] = 0 can only be achieved if p(y|x) is a delta function
for every x.
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1. f(x) = E[Y |x]

2. f(x) 6= E[Y |x].
When f(x) = E[Y |x], the expected cost can be simply expressed as

E[C] =
ˆ
X
p(x)

ˆ
Y

(E[Y |x]− y)2p(y|x)dydx

=
ˆ
X
p(x)Var [Y |X = x] dx (6.4)

Recall that Var [Y |X = x] is the variance of Y , for the given x. The expected cost, therefore,
reflects the cost incurred from noise or variability in the targets. This is the best scenario
in regression for a squared error cost; we cannot achieve a lower expected cost.

The next situation is when f(x) 6= E[Y |x]. Here, we will proceed by decomposing the
squared error as

(f(x)− y)2 = (f(x)− E[Y |x] + E[Y |x]− y)2

= (f(x)− E[Y |x])2 + 2(f(x)− E[Y |x])(E[Y |x]− y)︸ ︷︷ ︸
g(x,y)

+ (E[Y |x]− y)2

Notice that the expected value of g(x, Y ) for each x is zero because

E[g(x, Y )] = E
[
(f(x)− E[Y |x])(E[Y |x]− Y )|x

]
= (f(x)− E[Y |x])E

[
(E[Y |x]− Y )|x

]
= (f(x)− E[Y |x]) (E[Y |x]− E[Y |x])
= 0.

Therefore, we can conclude that E[g(X, Y )] = 0, when taking expectations over X. We
can now express the expected cost as

E[C] = E[(f(X)− Y )2]
= E[(f(X)− E[Y |X])2]︸ ︷︷ ︸

reducible error

+E[(E[Y |X]− Y )2]︸ ︷︷ ︸
irreducible error

.

The first term reflects how far the trained model f(x) is from the optimal model E[Y |x].
The second term reflects the inherent variability in Y given x, as written in Equation (6.4).
These terms are also often called the reducible and irreducible errors. If we extend the
class of functions f to predict E[Y |x], we can reduce the first expected error. However, the
second error is inherent or irreducible in the sense that no matter how much we improve the
function, we cannot reduce this term. This relates to the problem of partial observability,
where there is always some stochasticity due to a lack of information. This irreducible
distance could potentially be further reduced by providing more feature information (i.e.,
extending the information in x). However, for a given dataset, with the given features, this
error is irreducible.

To sum up, we argued here that optimal classification and regression models critically
depend on knowing or accurately learning the posterior distribution p(y|x). This task can
be solved in different ways, but a straightforward approach is to assume a functional form
for p(y|x), say p(y|x,θ), where θ is a set of weights or parameters that are to be learned
from the data.

59



Chapter 7

Linear Regression and Polynomial Regression

Given a data set D = {(xi, yi)}ni=1 the objective is to learn the relationship between features
and the target. We start by hypothesizing the functional form of this relationship. For
example, the function f might be a linear function

f(x) = w0 + w1x1 + w2x2

where we need to learn w = (w0, w1, w2). Alternatively, we might hypothesize that f is a
nonlinear function, such as f(x) = α+ βx1x2, where α and β is another set of parameters
to be learned.

In this chapter, we focus on estimating linear functions. The function is modeled as a
linear combination of features and parameters, i.e.

f(x) = w0 + w1x1 + . . . wdxd =
d∑
j=0

wjxj = x>w

where we extended x to (x0 = 1, x1, x2, . . . , xd). This extension to the vector is for simplicity
of notation: it allows us to write f(x) as a dot product, and avoid having to specially account
for the intercept term w0. Finding the best parameters w ∈ Rd+1 is referred to as the linear
regression problem. We begin by formalizing this as a maximum likelihood problem.

7.1 Maximum Likelihood Formulation
We now consider a statistical formulation of linear regression. We shall first lay out the
assumptions behind this process and subsequently formulate the problem through maxi-
mization of the conditional likelihood function. In following section, we will show how to
solve the optimization and analyze the solution and its basic statistical properties.

Let us assume that the observed data set D is a product of a data generating process
in which n data points were drawn independently and according to the same distribution
p(x). Assume also that the target variable Y has an underlying linear relationship with input
X = (X1, X2, . . . , Xd), modified by some error term ε that follows a zero-mean Gaussian
distribution, i.e. ε : N (0, σ2). That is, for a given input x, the target y is a realization of a
random variable Y defined as

Y =
d∑
j=0

ωjXj + ε,

where ω = (ω0, ω1, . . . , ωd) is a set of unknown coefficients we seek to recover through
estimation, and X0 = 1 is the intercept term. Generally, the assumption of normality for
the error term is reasonable (recall the central limit theorem!), although the independence
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between ε andX may not hold in practice. Using a few simple properties of expectations, we
can see that Y also follows a Gaussian distribution, i.e. its conditional density is p(y|x,ω) =
N (ω>x, σ2).

In linear regression, we seek to approximate the target as f(x) = w>x, where weights
w are to be determined. We first write the conditional likelihood function for a single pair
(x, y) as

p(y|x,w) = 1√
2πσ2

exp
(
−(y − x>w)2

2σ2

)
where we use the notation exp(a) = ea, to make the exponent easier to read. Observe that
the only change from the conditional density function of Y is that coefficients w are used
instead of ω. The MLE problem, where we assume the space of possible values for the
weights is F ⊂ Rd+1 is

wMLE = argmin
w∈F

−
n∑
i=1

ln p(yi|xi,w)

= argmin
w∈F

−
n∑
i=1

ln 1√
2πσ2

exp
(
−(yi − x>i w)2

2σ2

)

= argmin
w∈F

−
n∑
i=1

[
− ln
√

2πσ2 − (yi − x>i w)2

2σ2

]

= argmin
w∈F

n∑
i=1

ln
√

2πσ2 +
n∑
i=1

(yi − x>i w)2

2σ2 . first term is constant wrt w

= argmin
w∈F

n∑
i=1

(yi − x>i w)2

2σ2 . dropping the first term does not change the solution

= argmin
w∈F

1
2σ2

n∑
i=1

(yi − x>i w)2 . scaling by 2σ2 does not change the solution

= argmin
w∈F

n∑
i=1

(yi − x>i w)2 (7.1)

The resulting objective is intuitive. Our prediction ŷi
def= x>i w. The MLE formulation

states that we should find the weights that minimize the squared differences between our
predictions ŷi and the given yi. A simple example illustrating the linear regression problem
is shown in Figure 7.1. In the next sections, we will discuss how to solve this optimization
and the properties of the solution.

Note that here it seems obvious that we could have just started with the squared error
objective. This is in fact how ordinary least squares (OLS) was originally introduced. How-
ever, there are two reasons that we use the MLE approach. First, the statistical framework
provides insights into the assumptions behind OLS regression. In particular, the assump-
tions include that the data D was drawn i.i.d.; there is an underlying linear relationship
between features and the target; that the noise (error term) is zero-mean Gaussian and in-
dependent of the features; and that there is an absence of noise in the collection of features.
Second, for other distributions p(y|x)—such as the Bernoulli when we do classification—
guessing a good objective is much less obvious. For those situations, we will often turn to

61



x

y

f x( )

( , )x y1 1

( , )x y2 2

e f x y1 1 1= ( ) {

Figure 7.1: A linear regression solution on data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}.
The task of the optimization process is to find the best linear function f(x) = w0 + w1x so
that the sum of squared errors e2

1 + e2
2 + e2

3 + e2
4 is minimized.

an MLE formulation to help us define a reasonable objective for our parameters. When
possible, it is better to take a more unified approach.

Example 15: Consider again data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)} from Figure
7.1. We want to find the maximum likelihood coefficients—the least-squares fit—for f(x) =
w0 + w1x. The problem corresponds to finding the solution with the following variables

X =


x>1
x>2
x>3
x>4

 =


1 1
1 2
1 3
1 4

 , w =
[
w0
w1

]
, y =


1.2
2.3
2.3
3.3

 ,
where a column of ones was added to x to allow for a non-zero intercept w0. We can
substitute X and y into Equation (7.3) below, to get the solution w = (0.7, 0.63). At this
point, the gradient w.r.t. w of the sum of squared errors is zero and the sum of squared
errors is 0.223. �

7.2 Linear Regression Solution
To minimize the sum of squared errors, let’s define

ci(w) = (f(xi)− yi)2 = 1
2

(
x>i w− yi

)2
, (7.2)

with the full objective as

c(w) = 1
n

n∑
i=1

ci(w)

We added a normalization by the number of samples, so that we have an average squared
error rather than a cumulative error. This optimization is equivalent, since normalization by
a fixed constant does not change the solution: argminw

1
n

∑n
i=1 ci(w) = argminw

∑n
i=1 ci(w).

Numerically, though, the average error is more sensible to optimize, since it will not grow
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with more data. The cumulative error, on the other hand, can get very big if n is big. So,
to implement a solution, we will use Equation (7.2) instead of Equation (7.1). Similarly,
we used 1

2 in front of Equation (7.2) without changing the solution; this will be convenient
later to cancel the 2 that comes from the gradient.

Notice that to compute the gradient of the objective, it decomposes into a sum of
gradients for each sample

∇c(w) = 1
n

n∑
i=1
∇ci(w)

and so we simply need to determine the gradient of the error for each sample (xi, yi). We
can use the chain rule, by introducing variable u = x>i w− yi, to get

∂ci(w)
∂wj

=
∂ 1

2(x>i w− yi)2

∂wj

=
∂ 1

2u
2

∂u

∂u

∂wj
. u

def= x>i w− yi

= u
∂(
∑d
m=0 ximwm − yi)

∂wj

= u
d∑

m=0

∂ximwm
∂wj

= uxij .
∂ximwm
∂wj

= 0 for m 6= j

= (x>i w− yi)xij

This derivation is for any 0 ≤ j ≤ d.
Our goal is to find w such that ∂c(w)

∂wj
= 0 for all 0 ≤ j ≤ d. We obtain a system of

equations, with d+ 1 variables and d+ 1 equations

1
n

n∑
i=1

(x>i w− yi)xi0 = 0

1
n

n∑
i=1

(x>i w− yi)xi1 = 0

...

1
n

n∑
i=1

(x>i w− yi)xid = 0

which can be equivalently written in vector notation as 1
n

∑n
i=1(x>i w− yi)xi = 0, where 0

is the d+ 1 vector of all zeros. We can turn to linear algebra to obtain a solution. We can
write down the matrix and vector that correspond to this linear system of equations

A def= 1
n

n∑
i=1

xix>i ∈ R(d+1)×(d+1)

b def= 1
n

n∑
i=1

xiyi ∈ Rd+1 (7.3)

Then our goal is to find w such that Aw = b. If A is invertible, then w = A−1b.
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In practice, though, it is more common to solve for the weights w using gradient descent.
For gradient descent, we would initialize the weights w at some random initialization and
iteratively update w until we reach a point where the gradient is approximately. This is
shown in the pseudocode, in Algorithm 2.

Algorithm 2: Gradient Descent for a given objective c
1: Fix iteration parameters: tolerance = 10−4 and max iterations = 105

2: w← random vector in Rd
3: err←∞
4: while |c(w)− err| > tolerance and have not reached max iterations do
5: err← c(w) . for linear regression, c(w) = 1

2n
∑n
i=1(x>i w− yi)2

6: g← ∇c(w) . for linear regression, ∇c(w) = 1
n

∑n
i=1(x>i w− yi)xi

7: // The step-size η could be chosen by line-search, as in Algorithm 1
8: η ← line search(w, c,g)
9: w← w− ηg

10: return w

Using gradient descent can be more efficient than solving for w = A−1b. Each gradient
descent update costs O(nd), whereas the solution to the linear system costs O(d3 + d2n).
It costs d2n to construct A and matrix inversion1 costs approximately O(d3). If we use k
iterations for gradient descent, then gradient descent costs O(ndk) in total. For big d and
fewer samples, gradient descent is almost definitely more efficient. Further, we can get to
an approximate solution with gradient descent efficiently, with a relatively small number of
iterations.

The cost of gradient descent, though, is still quite high because we have to iterate over
the entire dataset to compute the gradient. It is not uncommon to have very large datasets.
Rather, what is really used in practice is the much more efficient stochastic gradient descent.
We describe this in the next section, Section 7.3.

Exercise 8: Show that A = 1
nX>X and b = 1

nX>y. Further, show that c(w) =
1
n‖Xw−y‖22. Note that ‖v‖2 =

√
v>v =

√
v2

1 + v2
2 + . . . v2

n is the `2 norm, and ‖v‖22 = v>v
is simply the square of the norm that removes the square-root. �

7.3 Stochastic Gradient Descent and Handling Big Data Sets
One common approach to handling big datasets is to use stochastic approximation, where
samples are processed incrementally. To see how this would be done, let us revisit the
gradient of the objective function, ∇c(w). Computing this gradient for a large number of
samples can be expensive or infeasible. An alternative is to approximate the gradient less
accurately with fewer samples. In stochastic approximation, we typically approximate the
gradient with one sample, or a small mini-batch of b samples (e.g., b = 32). For example,
if using one sample to approximate the gradient (b = 1), you would randomly sample a

1We can actually use other linear system solvers to find w such that Aw = b; the best strategy is not
necessarily to compute the matrix inverse. But, the costs are still typically close to O(d3), so for simplicity
of analysis we use this computational complexity.

64



datapoint i and update the weights on iteration t using

wt+1 ← wt − ηt(x>i w− yi)xi

for some stepsize ηt.
At first glance, this might seem a little crazy. How can we get a good descent direction,

with such a rough approximation to the gradient? The true gradient requires summing the
gradients for all samples, and we use only one of those gradients! Can we even say anymore
that our algorithm will converge? Though this approach may appear to be too much of an
approximation, there is a long theoretical and empirical history indicating its effectiveness
(see for example [5, 4]). In fact, with modern dataset sizes that are very large, it is the
most common strategy in use in machine learning.

The key idea for why this works is simple: the gradient for a single sample is an unbiased
estimate of the true gradient. Notice that the batch gradient can be seen as an expectation
where each sample (Xi, Yi) in the dataset has a uniform probability of 1

n , for Xk an d+ 1
random vector. In stochastic gradient descent, we sample a random datapoint (Xk, Yk)
uniformly—proportionally to this probability of 1

n—and so get that

E[(X>k w− Yk)Xk] =
n∑
i=1

p(i)(x>i w− yi)xi

= 1
n

n∑
i=1

(x>i w− yi)xi.

Exercise 9: Show that the mini-batch stochastic gradient is also an unbiased estimate of
the batch gradient.

Mini-batch Gradient for Linear Regression = 1
k

b∑
k=1

(x>ikw− yik)xik (7.4)

for i1, . . . , ib sampled uniformly from {1, . . . , n}. �

This stochastic gradient descent approach is shown in Algorithm 3. Each step corre-
sponds to updating with a randomly chosen mini-batch of data. Typically, in practice, this
entails iterating one or more times over the dataset in order (assuming it is random, with
i.i.d. samples). Each iteration over the dataset is called an epoch. The conditions for con-
vergence typically include conditions on the step-sizes, requiring them to decrease over time.
In practice, though, we often use a fixed stepsize η0, a stepsize that decays with the epoch
number, or smarter stepsize algorithms that use statistics on the magnitude of the gradient.
For example, similarly to an algorithm called AdaGrad [7], we can normalize the stepsize
by the sum of accumulating gradients: ηt = η0(1 + ḡt)−1 where ḡt = ḡt−1 + 1

d+1
∑d
j=0 |gt,j |.

After many epochs, these stochastic gradient descent updates will converge, though with
more oscillation around the true weight vector, with the decreasing step-size progressively
smoothing out these oscillations.
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Algorithm 3: Stochastic Gradient Descent for objective c(w) = 1
nci(w)

1: Fix iteration parameters: number of epochs = 104 and mini-batch size b = 32
2: w← random vector in Rd
3: for p = 1, . . . number of epochs do
4: Shuffle data points from 1, . . . , n
5: for k = 1, . . . , n do
6: g← ∇ck(w) . for linear regression, ∇ck(w) = (x>kw− yk)xk
7: // For convergence, the step-size ηt needs to decrease with time, such as ηt = p−1

8: // In practice, it is common to use stepsizes that do not decay with time
9: // such as picking a small fixed stepsize (η = 0.01), or using stepsize adaptation

10: η ← p−1

11: w← w− ηg
12: return w

Remark: In many cases, the dataset is actually constantly growing. Data is constantly
being gathered, and new samples are streaming in. In this streaming setting—also called an
online setting—stochastic gradient descent allows us to avoid storing all the data, since we
simply do updates with the most recent samples. Further, the stochastic gradient update
is an unbiased estimate of the gradient of the true expected error, E[(X>w− Y )X] where
the expectation is over all pairs (X, Y ). Each new datapoint is a random sample from the
joint distribution over (X, Y ).

7.4 Polynomial Regression: Using Linear Regression to Learn
Non-linear Predictors

At first, it might seem that the applicability of linear regression to real-life problems is
greatly limited. After all, it is not clear whether it is realistic (most of the time) to assume
that the target variable is a linear combination of features. Fortunately, the applicability
of linear regression is broader because we can use it to obtain non-linear functions. The
main idea is to apply a non-linear transformation to the observation vector x prior to the
fitting step. A linear function in this new feature space provides a nonlinear function in the
original observation space. In this section, we will discuss one such nonlinear transformation:
polynomials. Many other nonlinear transformations are possible—see for example radial
basis functions, wavelets, and Fourier basis to name a few. The idea, though, is the same,
and so we will use polynomials as one representative example.

Let’s start by considering one-dimensional data, i.e., d = 1. In OLS regression, we would
learn the function

f(x) = w0 + w1x,

where x is the data point and w = (w0, w1) is the weight vector. To achieve a polynomial
fit of degree p, we will modify the previous expression into

f(x) =
p∑
j=0

wjx
j ,
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Figure 7.2: Example of a linear vs. polynomial fit on a data set shown in Figure 7.1. The
linear fit, f1(x), is shown as a solid green line, whereas the cubic polynomial fit, f3(x), is
shown as a solid blue line. The dotted red line indicates the target linear concept.

where p is the degree of the polynomial. We will rewrite this expression using a set of basis
functions as

f(x) =
p∑
j=0

wjφj(x) = w>φ,

where φj(x) = xj and φ = (φ0(x), φ1(x), . . . , φp(x)). We simply apply this transformation
to every data point xi to get a new dataset {(φ(xi), yi)}. Then we use linear regression on
this dataset, to get the weights w and the nonlinear predictor f(x) =

∑p
j=0wjφj(x), which

is a polynomial (nonlinear) function in the original observation space.

Example 16: In Figure 7.1 we presented an example of a data set with four data points.
What we did not mention was that, given a set {x1, x2, x3, x4}, the targets were generated
by using function 1 + x

2 and then adding a measurement error ε = (−0.3, 0.3,−0.2, 0.3). It
turned out that the optimal coefficients wMLE = (0.7, 0.63) were close to the true coefficients
ω = (1, 0.5), even though the error terms were relatively significant. We will now attempt
to estimate the coefficients of a polynomial fit with degrees p = 2 and p = 3.

Using a polynomial fit with degrees p = 2 and p = 3 results in w2 = (0.575, 0.755,−0.025)
and w3 = (−3.1, 6.6,−2.65, 0.35), respectively. The average squared error on the dataset
equals c(w2) = 0.055 and c(w3) ≈ 0. Thus, the best fit is achieved with the cubic polyno-
mial.

Note that this polynomial is strictly more expressive than either the linear function and
the degree two polynomial, since it can always choose to set the weights to zero and ignore
the added features. It is no surprise, then, that it can achieve a lower squared error than
either the linear function or the quadratic function. As we discuss in the next chapter,
however, this cubic function is actually not a good predictor. It can achieve a better fit,
but does not generalize well to new data nor does it discover the true linear function that
generated the data. �

The same idea extends to multivariate observation vector x. Each transformation φj(x)
is a non-linear function of the input x. For example, for x = (x1, x2), we could define
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polynomial basis

φ(x) =



φ0(x) = 1.0
φ1(x) = x1
φ2(x) = x2
φ3(x) = x1x2
φ4(x) = x2

1
φ5(x) = x2

2


This transformation allows us to learn a degree-2 polynomial, now with 6 variables w0, . . . , w5
to learn rather than the 3 we would learn for (x0 = 1, x1, x2). We can similar obtain a cubic
functions, adding the required terms for degree-3 polynomial, including x2

1x2, x2
1x

2
2, x3

1 and
so on. The number of variables for this cubic, if we include all the possible terms, is 10.

In general, for a p-degree polynomial on d inputs, the number of terms corresponds to
number of combinations of choosing p elements from a set of d+ 1 elements2 if repetition is
allowed:

((d+1)+p−1
p

)
=
(d+p
p

)
. So, for two variables, the quadratic has

(2+2
2
)

=
(4
2
)

= 6; the
cubic has

(2+3
3
)

=
(5
3
)

= 10; and a quartic would have
(2+4

4
)

=
(6
4
)

= 15. For three variables,
the quadratic has

(3+2
2
)

=
(5
2
)

= 10; the cubic has
(3+3

3
)

=
(6
3
)

= 20; and a quartic would
have

(3+4
4
)

=
(7
4
)

= 35.

Remark: Recall that in linear regression, we made the assumption that Y given an input x
is Gaussian distributed: Y ∼ N (µ = x>w, σ2). The distribution of the observation vector
itself was not relevant. Under this nonlinear transformation, we can similarly notice we
are making a Gaussian assumption. However, now the mean for the Gaussian is a more
complex, nonlinear function of x: Y ∼ N (µ = φ(x)>w, σ2).

2It is d + 1 because in the polynomial input we consider x0 = 1.0 to be a valid term to select.
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Chapter 8

Generalization Error and Evaluation of Models

The majority of this book has focused on algorithm derivation and obtaining models, but we
have yet to address how to evaluate these models. The maximum likelihood formalism for
deriving learning algorithms provides some consistency results, where in the limit of samples
we can discuss the convergence point of an estimator. In practice, however, we would like
to evaluate the models and the algorithms based on a finite sample. Imagine a setting
where you learn two models, say using linear regression and polynomial regression. Which
of these two models is “better"? What does it even mean to say better? Are we trying
to compare algorithms or models obtained from a specific instance of an algorithm? How
can we be confident that the measured performance accurately reflects the performance we
expect to see on new data? These questions are largely separate from our previous questions
of effectively optimizing a specified objective, and rather starts to ask questions about the
properties of that objective and about empirical properties of learned models.

In this chapter, we provide empirical tools to better evaluate the properties of learning
algorithms and models. We will start by discussing the idea of generalization error: the error
of a model on new data. This reflects how well that model generalizes to data it did not get
train on, which reflects our ultimate goal of deploying predictors to make predictions on new
data. We will discuss the nuances in trying to accurately estimate this generalization error.
Towards this goal, we will discuss how to split data and how to use statistical significance
tests to provide some level of confidence that one algorithm or model is better than another,
under some specific criteria. We will rarely be able to make strong conclusions based on
experiments, but we can build up some evidence on the algorithm or model’s properties.

These tools are arguably the most critical aspects of properly using machine learning
algorithms in practice. One can learn a complex model, but without any understanding of
how it is expected to perform in practice on new data, it is not viable to actual use these
models. Whether an algorithm is used for scientific purposes or deployed in real systems,
have an understanding of its properties both theoretically and empirically is key to obtain
expected outcomes. This chapter only scratches the surface of the complex topic of proper
evaluation of learning algorithms and models. For a nice overview of evaluation for machine
learning algorithms, see [9].

8.1 Generalization Error and Overfitting
Our goal is to minimize generalization error: the expected cost. For a given loss, or cost
cost(ŷ, y), the goal is to minimize the expected cost, E[C] =

´
X×Y p(x, y)cost(f(x), y)dxdy.

We already saw this goal when talking about optimal predictors. But, we cannot directly
minimize the generalization error; instead, we have minimized an empirical error. For
example, for regression, we minimized a sample average squared error 1

n

∑n
i=1(f(xi)− yi)2
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which is an unbiased and consistent estimate of the true expected cost. A natural question
is, for this minimum w of the empirical cost on the given training dataset, how well does it
do in terms of the expected cost?

One might hope that by minimizing the empirical cost, that we should do well in terms of
the expected cost. After all, a sample average is a reasonable estimate of the expectation.
Unfortunately, in some cases, minimizing the empirical cost can produce functions that
generalize poorly. Consider the following extreme example. Let f be a function that
memorizes the data. For every observed xi, it returns precisely yi. For any xi that are
not observed, it returns 0. This function will get zero empirical error—also called training
error—but will not generalize at all and is likely to do very poorly in terms of the expected
cost—the generalization error.

This effect is called overfitting. The term comes from the idea that the function has
overly specialized—or overly fit itself—to the training set, at the expense of performing well
for other data points. Overfitting typically occurs because the complexity of the model is
increased considerably, whereas the size of the data set remains small relative to this model
size. Even with modern datasets that are quite large, model complexity has increased at a
commiserate pace, and so these very large models overfit to the large datasets.

Example 17: Let’s return to the polynomial regression example, shown in Figure 7.2.
Now, instead of simply asking how well the function can fit the data, we ask how well it
performs on new data. To evaluate the learned models, we generate a testing dataset of 100
samples with observations x ∈ {0, 0.1, 0.2, . . . , 10} and noise-free target values generated
using the true function 1 + x

2 .
Using a polynomial fit with degrees p = 2 and p = 3 results in w2 = (0.575, 0.755,−0.025)

and w3 = (−3.1, 6.6,−2.65, 0.35), respectively. The average error on the training dataset
equals c(w2) = 0.05 and c(w3) ≈ 0. Thus, the best fit is achieved with the cubic poly-
nomial. However, the average error on the test dataset reveals poor generalization ability
of the cubic model. The average squared errors are ctest(w) = 0.269, ctest(w2) = 0.039,
and ctest(w3) = 220.185. It is clear the cubic model is overfitting, which is not surprising
considering it has much higher model complexity than the linear models—and higher than
is required to actually fit the data. �

Though we know overfitting occurs, it is not always obvious to see that it is occurring.
One signature of overfitting is an increase in the magnitude of the coefficients. This mani-
fests in the above example. While the absolute values of all coefficients in w and w2 were
less than one, the values of the coefficients in w3 became significantly larger with alternating
signs. (We will discuss regularization in Chapter 9 as an approach to prevent this effect.)
This occurs because the cubic function has four unknowns (four parameters) and only four
observations: it can fit this small dataset of four examples perfectly. In particular, it can
fit the noise ε in the targets by adding and subtracting large numbers to get the precise y
values. For sample (x = 1, y = 1.2), we have f(x) = −3.1+6.6∗1−2.65∗12 +0.35∗13 = 1.2.
For sample (x = 2, y = 2.3), we have f(x) = −3.1 + 6.6 ∗ 2− 2.65 ∗ 22 + 0.35 ∗ 23 = 2.3. And
so on. The function contorts to an odd solution, so that it can perfectly match the given y,
even though we actually know that these may not be optimal—our goal is E[Y |x].

More generally, we can measure overfitting by obtaining samples of generalization error.
If we have an independent dataset, called a test set, we can obtain a sample average estimate
of the generalization error. Unlike the training set, this test set gives an unbiased estimate
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Figure 8.1: Hypothetical training and testing error, for polynomial regression with increasing
polynomial degree. The training error decreases with increasing degree (increasing model
complexity). The testing error improves, when using more complex models, but then starts
to degrade with higher-order polynomials due to overfitting.

of the generalization error because our model was not fit to it. (We discuss more about
how to get good estimates of generalization error in Section 8.2.) In general, if there is a
significant mismatch between training and testing error, this could indicate overfitting. We
cannot simply compare the numbers, because we generally expect training error to be lower
than testing error (generalization error). The weights were chosen to minimize that error,
after all. A function could be quite good in terms of generalization error, and still have
lower training error than testing error. Instead, it is typically easier to gauge overfitting
by comparing different models. For example, you could increase model complexity, such as
trying all polynomials up to degree p, and then see at what degree the testing error stops
decreasing and starts increasing, as in Figure 8.1.

Models may not only suffer from overfitting; they can also suffer from underfitting. The
problem here is usually that the model class is insufficient to represent the true model, and
so is not able to obtain a good fit. In this case, the training error can be quite high. Another
way to see this is that the learned model cannot explain the data. It is reasonable to expect
that with growing dataset sizes, for increasingly complex problems, our models will begin
to suffer more from underfitting than overfitting. The true model—determined by complex
interactions in the world—is likely not in our function class.

8.2 Obtaining Samples of Error
The most straightforward way to obtain a measure of the performance—generalization
error—for a model is to use a test set, as discussed in the previous section. Before doing
any training, a part of the data is set to the side—or held out—to only be used at the
very end to gauge performance of our learned function. For example, if we have 10,000
samples, we could use n = 8000 for training and m = 2000 for testing. Once the function is
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trained on the n training examples, its performance can be measured on the test. To give
an unbiased sample of generalization error, this hold-out test set cannot be used in any way
during training.

Once we have thesem samples of error, we can try to make statistically sound conclusions
about performance. We can use confidence intervals, with the sample average error on the
test set, to gauge the level of certainty in this estimate of the generalization error. If our
confidence intervals are narrow, then we can be relatively confident in our estimate. If the
confidence intervals are quite wide, then we need to exercise caution using our estimate and
it might be worthwhile gathering more data for testing before any deployment. Further,
we can also use these m estimates of error to compare different models, say one using
polynomial regression with p = 2 and another with p = 3. We discuss using statistical
significance tests to make high-probability claims about differences between algorithms, in
the next section.

In this course, we will simply assume access to a held-out test set. However, there are
more effective strategies to get samples of error; for your interest, a discussion about two
others approaches are included here. There are two key disadvantages to using a hold-out
test set. First, usually we want to use all the data for training. Unless there is more data
than can be used, keeping a hold-out test set is typically not practical. Even in this age of
huge datasets, we still typically want to learn on as much (quality) data as possible. Second,
once this hold-out test set has been used for evaluation, we cannot use it again because it
will not provide an unbiased estimate of the expected error. For example, after getting
performance of your models on that test set, one could go back and adjust meta-parameters
such as the regularization parameters. However, once you have done this, the test-set has
influenced the learned models and is likely to produce an optimistic estimate of performance
on new data. Therefore, this hold-out test-set can only be used once.

An alternative approach to obtain estimates of error is to use resampling techniques
from the whole dataset. Two common resampling techniques are k-fold cross-validation and
bootstrap resampling. In the first, the data is partitioned into k disjoint sets (folds). The
model is trained on k− 1 of the folds, and tested on the other fold; this is repeated k times
where each fold acts as the test fold. This approach simulates the common learning setting
where the training and test sets are disjoint. The resulting k performance estimates are
mostly independent, with some dependency introduced due to dependencies between the
training sets across the k runs. There is some additional bias introduced from the fact that
we do not run the model on the entire training set, but rather get an estimate of the error
for the algorithm trained on n−(n/k). For any final models that will be put into production
after performing these evaluations, we will likely train on the entire set of n instances.

The bootstrap resample uses the idea behind bootstrapping: the data itself is a reason-
able model of the underlying distribution. Sampling from the data is like sampling from the
distribution that generated the data. To generate training/test splits, the data is sampled
with replacement to create the training set, and the remaining unused samples used for
test. If k resamples are obtained, we again get k performance measures and can obtain a
sample average of performance across different splits.

To better understand the properties of these two approaches, see the thorough and
accessible explanation in [8, Chapter 5].
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8.3 Making Statistically Significant Claims

Now that we have a mechanism to obtain m (unbiased) samples of error, we can turn to
obtaining statistically significant (high-probability) claims about the performance of models.
Suppose we have m samples, and wish to compare learned functions f1 and f2. When
measuring performance on these m samples, we find that f1 seems to perform better on
average than f2. But can we say that it is actually better? In this section, we discuss this
questions, that is how to claim that f1 is better than f2, with high-probability, or realize
that we cannot make such claims.

8.3.1 Computing Confidence Intervals Tests

One of the easiest approaches for evaluating and comparing models is to use a tool we
already know: confidence intervals. We can compute a sample average error for a learned
function f , using the m samples of error from the test set: X̄ = 1

m

∑m
i=1 ci(f) where ci(f)

is the error for the ith sample. For example, we could have a learned linear function
f(x) = x>w and a squared error ci(f) = (x>i w − yi)2. Then we can obtain a 1 − δ (say
95%) confidence interval [X̄ − ε, X̄ + ε], where ε is such that Pr

(∣∣∣X̄ − E[X̄]
∣∣∣ ≥ ε) ≤ δ. If

we believed the errors were Gaussian distributed with known variance σ2, we could use a
95% Gaussian confidence interval, with ε = 1.96σ/

√
m.

We liked the Gaussian interval because it required fewer samples to get a tighter interval;
but sadly it is not really usable in practice. You might even be able to plot your m
errors and notice they look Gaussian distributed. But, you definitely do not know their
true variance. The Student’s t-distribution is precisely designed for this setting. This
distribution allows the sample variance to be used instead of the true variance. A 95%
confidence interval is given by ε = tδ,m−1Sm/

√
m with the unbiased (Bessel-corrected)

sample variance S2
m = 1

m

∑m
i=1(ci(f) − X̄)2. The constant tδ,m−1 now also depends on

the number of samples, contrasting this constant for the Gaussian (which was 1.96). For
m = 2, we have t0.05,1 = 12.71; for m = 11, we have t0.05,10 = 2.228; and for m = 101, we
have t0.05,100 = 1.984. In the limit, as m → ∞, this constant approach 1.96, because the
distribution becomes a Gaussian distribution.

This confidence interval is useful just for evaluating the performance of one model. But,
we can also use them to compare two models. If two intervals do not overlap, then we can
say that they are different with high probability: that they are statistically significantly
different. Assume f1 has error X̄1 and f2 has error X̄2, with correspondingly intervals given
by ε1 and ε2. Then if X̄1 + ε1 < X̄2− ε2, then we can say that f1 is statistically significantly
better than f2 with confidence level δ.

8.3.2 Parametric Tests

Using confidence intervals is one of the simplest, but also least powerful statistical signifi-
cance tests. We can do better by considering tests designed to compared two means. For
now, let’s start with a simple case, where we compare two models using the binomial test.
Imagine you do not care about precise errors, but rather just want to rank the algorithms
by saying which did better or worse. We can carry out such a comparison using a counting
test: for each sample i, we award a win to f1 if it has lower error and vice versa. In the
case of exactly the same performance, we can provide a win/loss randomly.
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1 2 3 4 m− 1 m

f1 1 0 1 1 · · · 0 1
f2 0 1 0 0 1 0

Table 8.1: A counting test where models f1 and f2 are compared on a set of m independent
samples. A model with better performance on a particular sample collects a win (1), whereas
the other algorithm collects a loss (0).

Our goal is to provide statistical evidence that say model f1 is better than model f2.
Suppose f1 has k wins out of m and f2 has m − k wins, as shown in Table 8.1. Assume
k > m−k, as otherwise we would be asking if f2 is statistically significantly better than f1.
We would like to evaluate the null hypothesis H0 that f1 and f2 have the same performance
by providing an alternative hypothesis H1 that f1 is better than f2. In short,

H0: quality(f1) = quality(f2)
H1: quality(f1) > quality(f2)

If the null hypothesis is true, the win/loss on each data set will be equally likely and
determined by minor variation. Therefore, the probability of a win on any data set will be
roughly equal to β = 1/2. Now, we can express the probability that f1 would have collected
k wins or more under the null hypothesis using the binomial distribution

p = Pr(f1 gets at least k wins) =
m∑
i=k

(
m

i

)
βi(1− β)m−i

This value is the probability of k wins, plus the probability of k+1 wins, up to the probability
of m wins, under the null hypothesis. It reflects how likely it is that f1 would have been
able to get so many wins, i.e., get a least k wins.

This probability p is referred to as the p-value. A typical approach in these cases is to
establish a significance value, say, α = 0.05 and reject the null hypothesis if p ≤ α. For
sufficiently low p-values, we may conclude that there is sufficient evidence that f1 is better
than f2. The p-value represents the likelihood of observing these outcomes—observing the
evidence—if the null hypothesis is true. If the p-value is very small, this says that the
probability of that evidence is very small, and so it suggests you were wrong to think the
null hypothesis accurately describes the world. Instead, it is more reasonable to conclude
your model of the world—the null hypothesis—is wrong. If the p-value is greater than α
we say that there is insufficient evidence for rejecting1 H0.

The choice of the significance threshold α is somewhat arbitrary. A value of 5% is
typical, but lower values indicate that the particular situation of k wins out of m was so
unlikely, that we can consider the evidence for rejecting H0 very strong. Being able to reject
the null hypothesis provides some confidence that the result did not occur by chance.

More generally, we can consider other statistical significance tests based on the distri-
butions of the performance measures. In the above example, a binomial distribution was

1Note that this does not mean that we accept the null hypothesis. Rather, we assumed it was true and
evidence did not contradict that fact. But, absence of evidence is not a proof: just because it was not
disproved, does not mean that it was proved.
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appropriate. If instead we considered the actual errors on the datasets, then we have pairs
of real values. In this case, a common choice is the paired t-test. This test can be used
if both errors appear to be distributed normally and if they have similar variance. The
paired t-test takes in the sampled differences between the algorithms (line 3 in Table 8.2),
d1, . . . , dm. Because again our null hypothesis is that the algorithms perform equally, un-
der the null hypothesis the mean of these differences is 0. If the differences are normally
distributed, then for the sample average d̄ = 1

m

∑m
i=1 di and sample standard deviation

Sd =
√

1
m−1

∑m
i=1(di − d̄)2, the random variable t = d̄−0

Sd/
√
m

is distributed according to the
Student’s t-distribution. The Student’s t-distribution is approximately like a normal distri-
bution, with a degrees-of-freedom parameter m− 1 that makes the distribution look more
like a normal distribution as m becomes larger.

We can now ask about the probability of this random variable T , relative to the com-
puted statistic. If we only care about knowing if algorithm 1 is better than algorithm 2, we
conduct a one-tailed test. If the probability that T is larger than t, i.e., p = Pr(T > t), is
small, then we obtain some evidence that algorithm 1 is better than algorithm 2. To test
if algorithm 1 is better than algorithm 2, we can swap the order of the difference. Or, in
this setting, t would be negative, so we check if p = Pr(T > −t) is small; then we obtain
some evidence that algorithm 2 is better than algorithm 1. These are both one-tailed tests,
reflecting the probabilities at one end of the tails of the distribution. A two-tailed test
instead asks if the two algorithms are different; in this case, one would use p = Pr(T > |t|).
Note that this two-tailed test will always have a bigger p-value than the one-sided tests.

1 2 3 4 m− 1 m

f1 0.11 0.08 0.15 0.12 · · · 0.07 0.09
f2 0.10 0.09 0.11 0.12 · · · 0.10 0.09

performance difference d 0.01 -0.01 0.04 0.0 · · · -0.03 0.0

Table 8.2: A table of errors for two learning algorithms a1 and a2 are compared on a set of
m independent data sets. The last row contains the differences, i.e., d = performance(f1) -
performance(f1). These differences are used for the paired t-test.

8.3.3 How to Choose the Statistical Significance Test

We gave two examples of test: the binomial test and the paired t-test. These tests make
parametric assumptions. The binomial test requires that the compared values are 0, 1 val-
ues. The paired t-test assumes the difference in errors follows a Student’s t-distribution,
which is satisfied if the paired samples are normally distributed with equal variance. How-
ever, these conditions are not always satisfied, in which case other tests are more suitable.
Further, there are some tests that do not make distributional assumptions, and rather are
non-parametric. For a summary of which test to use in different settings, see [9, Section
6.3]

The choice of the test comes down to satisfying assumptions, and the power of the test.
The power of the test is the ability for the test to reject the null hypothesis, if it should
be rejected. The approach using non-overlapping confidence intervals is a low-power test,
because it does not take into account the paired errors for the two models. When a test fails
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to reject the null hypothesis, when it should have been rejected, this is called a Type II error
(a false negative outcome). If the test is a low-power test, then it is more likely to commit
a Type II error. On the other hand, if a test is used when assumptions are violated, then
we might falsely conclude that we can reject the null hypothesis, when in fact we should
not have. This is called a Type I error (a false positive outcome). For example, if we make
a relatively strong parametric assumption that the errors are Gaussian, then we have more
power to reject the null hypothesis but might commit a Type I error if the errors are in fact
not normally distributed.

These choices for statistical tests are similar to the choices we make when learning
models: strong assumptions can enable faster learning, but are more biased and can lead
to poorer predictions, whereas very general models can produce accurate predictions, but
might need a lot of data. This choice is even more difficult for statistical significance
tests, where the amount of available data is often highly limited—running experiments is
expensive.
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Chapter 9

Regularization and Constraining the Hypothesis Space

In this chapter, we discuss how regularization can be used to mitigate issues of overfitting. In
particular, we discuss both regularizing the weights, as well as restricting the function class.
We then discuss a foundational concept in machine learning: the bias-variance trade-off.

9.1 Regularization as MAP
So far, we have discussed linear regression in terms of maximum likelihood. But, as before,
we can also propose a MAP objective. This means we specify a prior over w. In particular,
we select a prior to help regularize overfitting to the observed data. We will discuss two
common priors (regularizers): the Gaussian prior (`2 norm) and the Laplace prior (`1 norm),
shown in Figure 9.1.

Let’s start with the Gaussian prior. We assume each element wj has a Gaussian prior
N (0, σ2/λ), with zero covariance between the weights, for some λ > 0 and under the
assumption that p(y|x) = N (x>w, σ2). The choice of the constant σ2/λ for the prior
variance is explained below. By picking a Gaussian on each wj , we get the prior p(w) =
p(w1)p(w2) . . . p(wd). Taking the log of this zero-mean Gaussian prior, we get

− ln p(w) = −
d∑
j=1

ln p(wj) = −
d∑
j=1

ln
(

1√
2πσ2/λ

exp(−
w2
j

2σ2/λ

)

= −
d∑
j=1
−1

2 ln(2πσ2/λ)−
w2
j

2σ2/λ

= d
2 ln(2πσ2/λ)) + λ

2σ2

d∑
j=1

w2
j

We can drop the first term, which does not affect the selection of w since it is constant. We
can combine the negative log-likelihood and the negative log prior. Then ignoring constants,
we can add up the negative log-likelihood and negative log to the prior to get

argmin
w∈Rd+1

− ln(p(y|X,w))− ln p(w) = argmin
w∈Rd+1

1
2σ2

n∑
i=1

(
x>i − yi

)2
+ λ

2σ2

d∑
j=1

w2
j

= argmin
w∈Rd+1

1
2

n∑
i=1

(
x>i w− yi

)2
+ λ

2

d∑
j=1

w2
j .

Recall that x>i w =
∑d
j=0wjxij , which gives the prediction ŷi. Notice that the regular-

ization does not include w0, because the intercept term only shifts the function. It does not

77



increase the complexity of the function, and so does not notably contribute to overfitting.
It is preferable to avoid regularizing w0, so that it can accurately learn the mean value of
the target across x.

Exercise 10: Show that the learned w0 = 1
n

∑n
i=1 yi. Notice that this is approximating

E[Y ]. You can use this to conclude that if yi is centered across all samples, then we did not
need to add an intercept term (i.e., w0 = 0). Centering involves taking the average values
across samples, and subtracting it from each point: ỹi = yi − 1

n

∑n
i=1 yi. �

In summary, if we assume that each weight, except w0, has a zero-mean Gaussian prior
N (0, λ−1σ2), then we get the following `2-regularized problem1, also called ridge regression:

c(w) = 1
2

n∑
i=1

(
x>i − yi

)2
+ λ

2

d∑
j=1

w2
j (9.1)

where λ is a user-selected parameter that is called the regularization parameter. The idea
is to penalize weight coefficients that are too large; the larger the λ, the more large weights
are penalized. Correspondingly, larger λ corresponds to a smaller covariance in the prior,
pushing the weights to stay near zero. The MAP estimate, therefore, has to balance between
this prior on the weights, and fitting the observed data.

Similarly to linear regression, we can take the gradient of this objective to get a system
of d + 1 equations. We can obtain a closed form solution, but will typically use stochastic
gradient descent. Instead of using cumulative errors, we will again use an average error for
the first term to get the more commonly used objective for ridge regression:

c(w) = 1
2n

n∑
i=1

(
x>i − yi

)2
+ λ

2

d∑
j=1

w2
j (9.2)

Notice that this objective is actually different from the one above, in the sense that the λ
has a different scale. For a fixed λ, as the number of samples increases in Equation (9.1), the
regularizer plays a diminishing role. This is the typical for MAP, where prior information is
gradually washed out by more and more data. In Equation (9.2), however, even with more
data, we always include the same amount of regularization. In practice, if you know you
have lots of data, you will likely set λ to be small and so effectively the objectives in (9.1)
and (9.2) would not be too different.

The form in Equation (9.2) is more amenable for our stochastic gradient descent solution
approach, which is why we pick that instead of (9.1). We can write this objective as an
average of c1, c2, . . . , cn using ci(w) = 1

2
(
x>i − yi

)2 + λ
2
∑d
j=1w

2
j because

1
n

n∑
i=1

ci(w) = 1
n

n∑
i=1

1
2

(
x>i − yi

)2
+ λ

2

d∑
j=1

w2
j


= 1

2n

n∑
i=1

(
x>i − yi

)2
+ 1
n

n∑
i=1

λ

2

d∑
j=1

w2
j

= 1
2n

n∑
i=1

(
x>i − yi

)2
+ λ

2

d∑
j=1

w2
j = c(w)

1It is called `2-regularized linear regression, because the regularizer uses an `2-norm on the weights. See
the notation at the beginning of these notes, for the definitions of norms on vectors.
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The gradient for each term ci is composed of the following partial derivatives

∂ci(w)
∂w0

=
(
x>i − yi

)
and for j ∈ {1, 2, . . . , d}

∂ci(w)
∂wj

=
(
x>i − yi

)
xij + λwj

because
∂ λ2
∑d
k=1w

2
k

∂wj
= λ

2

d∑
k=1

∂w2
k

∂wj
= λ

2
∂w2

j

∂wj
= λwj .

Each stochastic gradient descent update is

wt+1 = wt − ηtgt

where gt = ∇ci(w) for a random sample i, with

∇ci(w) =



(
x>i − yi

)(
x>i − yi

)
xi1 + λw1(

x>i − yi
)
xi2 + λw2
...(

x>i − yi
)
xid + λwd



Exercise 11: Write down the mini-batch gradient descent update. �

We can go through the same procedure with a different prior: a Laplace prior. If we go
through similar steps as above, we get an `1 penalized objective

c(w) = 1
n

n∑
i=1

(
x>i − yi

)2
+ λ

d∑
j=1
|wj | (9.3)

which is often called the Lasso. We put a Laplace prior on each weight p(wj) = 1
2b exp(− |wj−µ|b )

with parameters µ = 0 and scale b = σ2/λ. This results in putting an `1 regularizer on the
weights, which sums up the absolute values of the weights.

Exercise 12: Derive Equation (9.3) using the MAP formulation with the given Laplace
prior, similarly to how it was done for MAP with a Gaussian prior on the weights. �

As with the `2 regularizer for ridge regression, the `1 regularizer penalizes large values
in w. However, it also produces more sparse solutions, where entries in w are zero. This
preference can be seen in Figure 9.1, where the Laplace distribution is more concentrated
around zero. In practice, however, this preference is even stronger than implied by the
distribution, due to how the spherical least-squares loss and the `1 regularizer interact.

Forcing entries in w to zero has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product

x>w =
d∑
j=0

xjwj =
∑

j:wj 6=0
xjwj .
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Figure 9.1: A comparison between Gaussian and Laplace priors. Both prefers values to be
near zero, but the Laplace prior more strongly prefers the values to equal zero.

This is equivalent to simply dropping entries in x and w where wj = 0.
For the Lasso, we no longer have a closed-form solution. We do not have a closed form

solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w. The `1 regularizer, however,
is non-differentiable at 0. Understanding how to optimize this objective requires a bit more
optimization background; we leave it for a future course.

9.2 Expectation and variance for the regression solutions
A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin with understanding the bias and variance of the non-regularized solution.
For simplicity in the derivation, let’s look only at the univariate setting: input x ∈ R and
weights w ∈ R, with f(x) = xw. For this analysis, we start by presuming the distributional
assumptions behind linear regression are true. This means that there exists a true parameter
ω such that for each of the data points Yi = ωXi+εi, where the εj are i.i.d. random variables
drawn according to N (0, σ2). We can characterize the MLE weights (estimator) wMLE as
a random variable, where the randomness is across possible datasets that could have been
observed. In this sense, we are considering the dataset D to be a random variable, and the
solution wMLE(D) from that dataset as a function of this random variable.

We can show that wMLE(D) is an unbiased estimator of ω. To do so, we will need the
closed form solution

wMLE(D) =
∑n
i=1XiYi∑n
i=1X

2
i

(9.4)
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For simplicity of notation, we will use Sn
def=
∑n
i=1X

2
i . Then we have that

E[wMLE(D)] = E
[∑n

i=1XiYi
Sn

]
= E

[∑n
i=1Xi(ωXi + εi)

Sn

]
. because Yi = ωXi + εi

= E
[∑n

i=1(ωX2
i +Xiεi)
Sn

]

= E
[
ω
∑n
i=1X

2
i +

∑n
i=1Xiεi

Sn

]

= E
[
ωSn
Sn

]
+ E

[∑n
i=1Xiεi
Sn

]
. by linearity of expectation

= E [ω] +
n∑
i=1

E
[
εi
Xi

Sn

]

= ω +
n∑
i=1

E[εi]E
[
Xi

Sn

]
. ω not random and εi independent of all Xi

= ω . because E [εi] = 0

Therefore, we can conclude that E[wMLE(D)] = ω and so wMLE(D) is an unbiased estimator.
We can similarly characterize the variance, and obtain

Var[wMLE(D)] = E
[
(wMLE(D)− ω)2

]
= E

[
wMLE(D)2

]
− ω2

Above we showed that wMLE(D) = ω +
∑n
i=1 εi

Xi
Sn

. Again, for simplicity of notation, define
this residual term Rn

def=
∑n
i=1 εi

Xi
Sn

. Then we get

wMLE(D)2 = (ω +Rn)2

= ω2 + 2ωRn +R2
n

We can further show that

E[ωRn] = ωE[Rn] = ω
n∑
i=1

E[εi]E
[
Xi

Sn

]
= 0

as we showed above when characterizing the expectation of wMLE(D). We can use the law
of total probability to show that

E[R2
n] = σ2E[S−1

n ]

We leave this as an exercise. Putting this all together, we get that

Var[wMLE(D)] = E
[
wMLE(D)2

]
− ω2

= ω2 + 0 + E[R2
n]− ω2

= σ2E[S−1
n ]

= σ2E[ 1
n
C−1
n ] . for Cn

def= 1
n

n∑
i=1

X2
i
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The last format is given in terms of the sample average estimate Cn, which is essentially
a sample average estimate of the variance for Xi. (It would be a variance estimate, if it was
centered around the mean.) This term reflects the variability in X. For a small number
of samples, Cn could vary widely, and could be very small. The inverse in the above can
be very big, and so the variance for wMLE(D) can be big for a small amount of data. This
implies that, across datasets, the solution wMLE(D) can vary widely. This behavior is not
desirable: if our solution could be very different across several different random subsets of
data, we cannot be confident in any one of these solutions. Notice that as n get bigger, the
variance decreases proportionally to n−1, because of the 1

n in front of Cn.
The regularized solution, on the other hand, is much less likely to have high covariance,

but will no longer be unbiased. Let wMAP(D) be the MAP estimate for the `2 regularized
problem with some λ > 0. As above, we can write the MAP estimate as a closed form
solution

wMAP(D) =
∑n
i=1XiYi
λ+ Sn

(9.5)

Then, using similar steps to above we get

E[wMAP(D)] = E
[∑n

i=1XiYi
λ+ Sn

]
= E

[
ωSn
λ+ Sn

]
+ E

[∑n
i=1Xiεi
λ+ Sn

]
= ωE

[
Sn

λ+ Sn

]
+ 0

6= ω

when λ > 0. Notice that if λ = 0, then wMAP(D) is unbiased. In fact, it simply correspond
to the MLE solution for λ = 0, so it makes sense that it is unbiased for λ = 0. The bias
is determined by how far E

[
Sn

λ+Sn

]
is from 1. As λ→ 0, the solution becomes less and less

biased. As λ→∞, the solution becomes maximally biased with E
[

Sn
λ+Sn

]
→ 0.

We can also characterize the variance of wMAP(D). We leave the steps as an exercise.
Again, for simplicity of notation, let’s define Cn,λ = 1

n(λ+ Sn). Then variance is

Var[wMAP(D)] = σ2E
[

1
nC

−1
n,λCnC

−1
n,λ

]
Notice now that even if Cn is very small, it does not cause the variance to become very big
because we are not inverting it. Instead, we use the inverse of Cn,λ. This inverse is always
smaller than 1/λ, because we increase the denominator by λ. Therefore, for reasonably
large λ, the variance will not be very big and it should be notably smaller than wMLE(D).

The reason we care about the bias and variance is that the expected mean-squared error
to the true weights can be decomposed into the bias and variance. We saw this in Section
3.5, when we talked about sample average estimators. As depicted in Figure 9.2, there is
an optimal choice of λ that minimizes this bias-variance trade-off—if we could find it. We
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can show the same decomposition for the weights for regression

E
[
‖w(D)− ω‖22

]
= E

 d∑
j=1

(wj(D)− ωj)2


=

d∑
j=1

E
[
(wj(D)− ωj)2

]
where we can then further simplify this inner term

E
[
(wj(D)− ωj)2

]
= E

[
(wj(D)− E [wj(D)] + E [wj(D)]− ωj)2

]
= E

[
(wj(D)− E [wj(D)])2

]
+ E

[
(E [wj(D)]− ωj)2

]
where the second step follows from the fact that

−2E [(wj(D)− E [wj(D)])(E [wj(D)]− ωj)] = (E [wj(D)]− ωj)E [wj(D)− E [wj(D)]]
= 0.

The first term above in E
[
(wj(D)− ωj)2] is the variance of the jth weight and the second

term is the bias of the jth weight, where E
[
(E [wj(D)]− ωj)2] = (E [wj(D)]−ωj)2 because

nothing is random in this term so the outer expectation is dropped. This gives

E
[
‖w(D)− ω‖22

]
=

d∑
j=1

E
[
(wj(D)− ωj)2

]

=
d∑
j=1

(E [wj(D)]− ωj)2 + Var [wj(D)]

showing that the expected mean-squared error to the true weight vector ω decomposes into
the squared bias E [wj(D)] − ωj and the variance Var [wj(D)]. The bias-variance trade-off
reflects the fact that we could potentially reduce the mean-squared error by incurring some
bias, as long as the variance is decreased more than the squared bias.

Remark: We do not directly optimize the bias-variance trade-off. We cannot actually
measure the bias, so we do not directly minimize these terms. Rather, this decomposition
guides how we select models.

9.3 The Bias-Variance Trade-off
Above we assumed that the true model was linear, and so the only bias introduced was from
the regularization. This assumed that the hypothesis space of linear functions included the
true function, and that the bias introduced was only due to regularization. In reality, when
using linear regression with regularization, we are introducing bias both from selecting a
simpler function class and from the regularization. If the true function is not linear, then
we cannot compare the learned weights for a linear function directly to the true function.
If a powerful basis is used to first transform the data, then we can learn nonlinear functions
even though the solution uses linear regression. In this case, it is feasible that this function
class is sufficiently powerful and includes the true function, and that the bias is mostly due

83



Figure 9.2: The bias-variance trade-off. Image obtained from: http: // scott.
fortmann-roe. com/ docs/ BiasVariance. html

to regularization. But, in general, it will be difficult to guarantee that we have specified a
function class that includes the true function, and it will be difficult to directly compare
our parameters to true parameters (which may not even be of the same dimension).

We can more generally talk about bias and variance by considering instead the reducible
error. In fact, the bias-variance trade-off is all about reducing the reducible error. (Remem-
ber, we cannot reduce the irreducible error—the name says it all—by improving how we
estimate the function.) We can define a more general bias-variance decomposition that
compares function outputs rather than parameter vectors. Recall the reducible error corre-
sponds to E

[
(fD(X)− f(X))2], where f(X) is the optimal function, i.e., f(x) = E [Y |x]

for the squared cost. We previously discussed this reducible error for a fixed function, with
expectation only over X. But now we additionally consider the fact that fD is random,
and we can reason about its expectation and variance for a given x.

Let’s start by only considering the expected mean-squared error, for a given input x.
Using similar steps to the decomposition above, we get

E
[
(fD(x)− f(x))2)

]
= (E [fD(x)]− f(x))2 + Var [fD(x)] .

Notice that in the second line, the expectation is now inside the squared distance; this
term corresponds to the squared bias. The bias here reflects the output of the estimated
function fD(x), in expectation across all datasets D. The variance term reflects how much
the prediction for x can vary, if we learn on different iid datasets. This decomposition of
the mean-squared error into a squared bias and variance is not obvious, but does follow
similar steps to above. It is left as an exercise.

The above generalization highlights that one of the ways we balance bias and variance
is actually in the selection of the function class. If we select a simple function class, the
class is likely not large enough—not powerful enough—to represent the true function. This
introduces some bias, but likely also has lower variance, because that simpler function class
is less likely to overfit to any one dataset. If this class is too simple, then we might be
suffering from underfitting. On the other hand, if we select a more powerful function class,
that does contain the true function, we may not have any bias but could have high variance
due to the ability to find a function in your large class that overfits a given dataset. Though
we have the ability to learn a highly accurate function, it will be difficult to actually find
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that function amongst this larger class. Instead, one is likely to select a model that overfits
to the given data, and does not generalize to new data (i.e., performs poorly on new data).

Finding the balance between bias and variance, and between underfitting and overfitting,
is a core problem in machine learning. Our goal is to identify the true function, and in some
cases the data may be insufficient for identification. For example, imagine you are given
a dataset of images, where the color red has no impact on prediction accuracy. Your
classifier, though, does not know that this property is irrelevant and may use it to better
fit the data. If there were multiple instances of the same picture, with and without the
color red, it might be able to learn that that property is not relevant. But that is too
much to hope for. Instead, we build-in some prior knowledge into the types of functions
we learn to acknowledge that the given data is unlikely to be sufficient to perfectly identify
the model. That prior knowledge need not be specific to the problem; it could be as simple
as preferring to use a minimal set of features in the observed data. Understanding what
this prior knowledge should be—understanding inductive biases—remains an important
question.
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Chapter 10

Logistic Regression and Linear Classifiers

In Chapter 6, when introducing prediction, we presented a classifier as a function f : X → Y
and showed that a reasonable goal to obtain a good classifier is to approximate p(y|x).
Similarly to linear regression, we need to figure out how to parameterize p(y|x). We know
p(y|x) must be a (conditional) Bernoulli distribution, because Y is a binary variable. The
parameter for a Bernoulli distribution is α(x) = p(y = 1|x), the success probability.

One of the simplest approaches to learning this distribution is given by logistic regression.
The idea is to parameterize p(y = 1|x) using a sigmoid function on x>w, i.e., (1+e−x>w)−1,
shown in Figure 10.1. In this chapter, we explain linear classifiers, why logistic regression
produces a linear classifier and how to estimate the parameters w for logistic regression.
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Figure 10.1: Sigmoid function in the interval [−5, 5].

10.1 Linear Classifiers

Suppose we are interested in building a linear classifier f : Rd → {0,+1}. Linear classifiers
try to find the relationship between inputs and outputs by constructing a linear function (a
point, a line, a plane or a hyperplane) that splits Rd into two half-spaces. An example of
a classifier with a linear decision surface is shown in Figure 10.2. The two half-spaces act
as decision regions for the positive and negative examples, respectively. For a given x, if
x>w > 0, then x is classified as a positive. If x>w < 0, then x is classified as a negative.

Given a data set D = {(xi, yi)}ni=1 consisting of positive and negative examples, there are
many ways in which linear classifiers can be constructed. For example, a training algorithm
may explicitly work to position the decision surface in order to separate positive and negative
examples according to some problem-relevant criteria; e.g., it may try to minimize the
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Figure 10.2: A data set in R2 consisting of nine positive and nine negative examples. The
gray line represents a linear decision surface in R2. The decision surface does not perfectly
separate positives from negatives.

fraction of examples on the incorrect side of the decision surface. Alternatively, the goal of
the training algorithm may be to directly estimate the conditional distribution p(y|x), such
as is done by logistic regression.

As in regression, we add a component x0 = 1 to each input (x1, . . . , xd) to model
the intercept term. Notice that, without an intercept term, the linear classifier would be
required to go through the origin, significantly skewing the solution. In Figure 10.2, for
example, if w0 = 0, then w1x1 + w2x2 = 0 for (x1 = 0, x2 = 0). However, the line depicted
clearly should not go through the origin.

10.2 What Logistic Regression Learns

Let us consider binary classification in Rd, where X = Rd+1 and Y = {0, 1}. The Bernoulli
distribution over Y , with α a function of x, is

p(y|x) =


(

1
1+e−ω>x

)(
1− 1

1+e−ω>x

) for y = 1

for y = 0
(10.1)

= σ(x>w)y(1− σ(x>w))1−y

where ω = (ω0, ω1, . . . , ωd) is a set of unknown coefficients we want to recover (or learn).
Notice that our prediction is σ(ω>x), and that it satisfies

p(y = 1|x) = σ(ω>x).

Therefore, as with many binary classification approaches, our goal is to predict the proba-
bility that the class is 1; given this probability, we can infer p(y = 0|x) = 1− p(y = 1|x).

The function learned by logistic regression returns a probability, rather than an explicit
prediction of 0 or 1. Therefore, we have to take this probability estimate and convert it to
a suitable prediction of the class. For a previously unseen data point x and a set of learned
coefficients w, we simply calculate the conditional probability as

p(y = 1|x,w) = 1
1 + e−x>w .
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If p(y = 1|x,w) ≥ 0.5 we conclude that data point x should be labeled as positive (ŷ = 1).
Otherwise, if P (y = 1|x,w∗) < 0.5, we label the data point as negative (ŷ = 0). The
predictor maps a (d+ 1)-dimensional vector x = (x0 = 1, x1, . . . , xd) into a zero or one.
Notice that the logistic regression classifier is a linear classifier, despite the fact that the
sigmoid is non-linear. This is because p(y = 1|x,w) ≥ 0.5 only when x>w ≥ 0. The
expression x>w = 0 represents the equation of a hyperplane that separates positive and
negative examples.

Notice that, even if logistic regression can perfectly model p(y = 1|x), this does not mean
we obtain perfect classification accuracy. Imagine you were given the true p(y = 1|x) that
generates the data. Imagine for one observation vector, p(y = 1|x) = 0.5. This means that,
for this given observation, 50% of the time is labeled positive and 50% it is labeled negative.
This goes back to partial observability and irreducible error. The given observations are
insufficient to perfectly characterize the outcome. Potentially, if we had obtain a richer
observation vector x with more information, the target y might become more certain and
the distribution over y more concentrated at one value. But, we are stuck with the data we
have been given, and so have to recognize that sometimes a class label is simply ambiguous,
even under the optimal model.

This does mean, however, that the probability values themselves can be reflective. If
the probability estimates are accurate, then they provide a measure of confidence in the
classification. You might be more comfortable making a health decision if the classifier p(y =
1|x) = 0.99 rather than if p(y = 1|x) = 0.6. Additionally, recognizing that the probabilities
themselves matter, rather than just the resulting classification, can help you pick between
classifiers. For example, if you have two classifiers that produce good accuracies, it is
preferable to have a classifier that consistently produces probabilities near 0.9 and 0.1, rather
than probabilities that hover around 0.5. This reason for this is that small perturbations
are expected to have more impact on the second classifier, which could suddenly erroneously
swap the labeling on an instance.

Remark: As we discuss in Chapter 8, the threshold for classification need not be 0.5. In
some cases, one might care more about failing to identify a positive (e.g., failing to identify
a disease); in such a case, it may be safer to err on the side of a smaller threshold, so that
more instances are labeled as positive. For now, we will assume this simpler thresholding,
but remain cognizant that the choice can be an important one.

10.3 Maximum Likelihood for Logistic Regression
To learn the parameters for logistic regression, we need to define an objective. We will once
again use maximum likelihood to help us derive a reasonable objective. As before, assume
that the data set D = {(xi, yi)}ni=1 is an i.i.d. sample from a fixed but unknown probability
distribution p(x, y) = p(y|x)p(x). The data is generated by randomly drawing a point x
according to p(x) and then sets its class label Y according to the Bernoulli distribution in
(10.1). Our objective is the negative log-likelihood for the conditional distribution, scaled
by the number of samples

ci(w) = 1
n

n∑
i=1
− ln p(yi|x)
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which we can write as c(w) = 1
n

∑n
i=1 ci(w) where

ci(w) = − ln p(yi|x) . p(yi|x) = σ(x>w)y(1− σ(x>w))1−y

= − ln σ(x>w)y − ln(1− σ(x>w))1−y

= −yi ln σ(x>i w)− (1− yi) ln
(
1− σ(x>i w)

)
=
(
yi ln

( 1
1 + e−x>i w

)
+ (1− yi) ln

(
1− 1

1 + e−x>i w

))
.

This objective is typically referred to as the cross-entropy.
From here, you could take the derivative of each component in this sum, using the chain

rule for the sigmoid. For the first component, with pi = σ(θi),

∂yi ln σ(x>i w)
∂wj

= yi
∂ ln σ(θi)
∂θi

∂θi
wj

= yi
∂ ln pi
∂pi

∂pi
∂θi

∂θi
wj

= yi
1
pi

∂pi
∂θi

∂θi
wj

= yi
1
pi
σ(θi)(1− σ(θi))xij

= yi(1− σ(θi))xij

because

∂σ(θi)
∂θi

= σ(θi)(1− σ(θi)).

You can verify this step for yourself, but explicitly plugging in the definition of σ. For the
second component, following similar steps, we get

∂(1− yi) ln(1− σ(x>i w))
∂wj

= (yi − 1)σ(θi)xij

Summing these together and taking the negative, we end up with the gradient (pi − yi)xij .

Exercise 13: We could have slightly rearranged the objective before taking the gradient.
This would lead to another path to derive the update rule for logistic regression. You can
notice first that (

1− 1
1 + e−x>i w

)
= e−x>i w

1 + e−x>i w

giving

ci(w) = −yi · ln
(
1 + e−x>i w

)
+ (1− yi) · ln

(
e−x>i w

)
− (1− yi) · ln

(
1 + e−x>i w

)
= (yi − 1) x>i w + ln

( 1
1 + e−x>i w

)
.

Derive the gradient of c starting from here. �
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Unlike linear regression, there is no closed-form solution to ∇c(w) = 0. Thus, we have
to proceed with iterative optimization methods, like gradient descent. We initialize w0
usually to a random vector (or potentially with the linear regression solution which provides
a much better initial point). Because the objective is convex, the initialization only affects
the number of steps, but should not prevent the gradient descent from converging to a
global minimum. The stochastic gradient descent update is

wt+1 = wt − ηt
(
σ(x>i wt)− yi

)
xi

and the mini-batch gradient descent update, for mini-batch (xk, yk), . . . , (xk+b, yk+b) is

wt+1 = wt −
ηt
b

k+b∑
i=k

(
σ(x>i wt)− yi

)
xi.

10.4 Issues with Minimizing the Squared Error
A natural question is why we went down this route for linear classification. Instead of
explicitly assuming p(y = 1|x) is a Bernoulli distribution and computing the maximum
likelihood solution for σ(x>w) = p(y = 1|x,w), we could have simply decided to use
σ(x>w) to predict targets y ∈ {0, 1} and then tried to minimize their difference, using our
favourite loss (the squared loss).

min
w

1
n

n∑
i=1

(
σ(x>i w)− yi

)2

Unfortunately, this more haphazard problem specification results in a non-convex optimiza-
tion. In fact, there is a result that using the Euclidean error for the sigmoid transfer gives
exponentially many local minima in the number of features [1].

Minimization of this non-convex function, therefore, is more problematic than the convex
cross-entropy. Gradient descent on the cross-entropy, with stepsizes gradually decayed, will
converge to a global minimum. For this non-convex squared error between the sigmoid
prediction and the true label, it will generally be impossible to ensure we can converge to
the global minimum. We could try to develop some tricks, like randomly restarting the
optimization a different points to find different local minima, in the hopes that one will be
the global minimum. But, such a search is not very effective. This example provides some
motivation for why we care about selecting our objectives in an intelligent way.
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Chapter 11

Bayesian Linear Regression

Bayesian estimation involves maintaining the entire posterior distribution, p(w|D). So far,
we only looked at Bayesian estimation for a marginal distribution, such as p(x) a Poisson
distribution with unknown parameter w corresponding to λ for the Poisson. We have only
discussed how MLE and MAP extends to conditional distributions, p(y|x). In this chapter,
we make the next step: discussing Bayesian estimation for conditional distributions.

In fact, once we have looked at MAP, the extension to Bayesian estimation is not a
big leap. For MAP, we already had to specify a prior to obtain argmaxw∈F p(w|D). For
Bayesian estimation, we need to maintain the entire posterior p(w|D), not just the mode.
Just as before, we simplify the explanation by only considering the univariate case: w ∈ R.

Assume that p(y|x) = N (µ = xw, σ2) for some fixed σ ∈ R. This is the assumption we
made for linear regression, and then for MAP will a Gaussian prior on the weights. Again,
let’s assume a Gaussian prior on the weights p(w) = N (0, σ2/λ) for some (regularization)
parameter λ > 0. Then we get

p(w|D) = p(D|w)p(w)
p(D)

= p(w)
∏n
i=1 p(yi|xi, w)´

p(w)
∏n
i=1 p(yi|xi, w)dw

As in Section 5.2, computing the posterior is complicated by the integral in the denominator.
In some cases, though, this integral can be solved analytically, and the posterior has a simple
known form. This was the case with conjugate priors. For a given p(y|x,w), a conjugate
prior p(w) is one where the posterior p(w|D) is of the same form as the prior (example,
both Gaussian).

For Bayesian linear regression, where p(y|x) = N (µ = xw, σ2), the conjugate prior is in
fact the prior used for `2 regularization: p(w) = N (0, σ2/λ). Given this prior, with prior
mean µ0 = 0 and prior variance σ2

0 = σ2/λ, it can be derived that

p(w|D) = N (µn, σ2
n) where σ2

n = σ2∑n
i=1 x

2
i + λ

µn =
∑n
i=1 xiyi + λµ0∑n
i=1 x

2
i + λ

=
∑n
i=1 xiyi∑n

i=1 x
2
i + λ

= σ2
n

σ

n∑
i=1

xiyi

The MAP solution corresponds to the mode of this distribution: µn. Additionally, we
can obtain a credible interval for which weights are plausible given the data, based on the
variance σn. If the variance is big, then even after seeing the data there are many plausible
values for w. As n gets larger, notice that σ2

n shrinks.
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For linear regression, though, we typically have multivariate inputs and do not know
the variance σ2. Fortunately, even when extending more generally to this setting, we have a
conjugate prior. First consider the univariate case. We need now a prior on weights w ∈ R
and also the variance σ2. The conjugate prior is called the Normal-Inverse-Gamma (NIG)
distribution, which has four parameters: µn, λn, αn, bn. For prior parameters µ0 ∈ R and
λ0, α0, b0 > 0 (e.g., µ0 = 0, λ0 = 0.1, α0 = 3, b0 = 10), we get posterior

p(w, σ2|D) = NIG(µn, λn, an, bn) where λn =
n∑
i=1

x2
i + λ

µn =
∑n
i=1 xiyi + λ0µ0∑n

i=1 x
2
i + λ

=
∑n
i=1 xiyi + λ0µ0

λn

an = a0 + 1
2n

bn = b0 + 1
2

(
n∑
i=1

y2
i + λ0µ

2
0 − λnµ2

n

)

For the NIG, the mode of the distribution is E[(w, σ2)] = (µn, bn
an−1). The solution for w is

the same as for MAP above. And now we also have an estimate for the most likely value
for the variance of the noise bn

an−1 .
The solution for the variance is not that intuitive as given, but for certain settings it

is more intuitive. Let’s assume that the data is centered, meaning 1
n

∑n
i=1 xi = 0. Let’s

further assume simple choice on the prior parameters, a0 = 1, b0 = 0 and µ0 = 0, and
use λ = 0 to minimally restrict the the solution for w, giving λ0 = 0. For this setting,
µn = wMLE =

∑n

i=1 xiyi∑n

i=1 x
2
i

. Let ŷi = wMLExi. Then we get that

bn
an − 1 =

b0 + 1
2
(∑n

i=1 y
2
i + λ0µ

2
0 − λnµ2

n

)
a0 + 1

2n

=
1
2
(∑n

i=1 y
2
i − λnµ2

n

)
1
2n

. µn = wMLE

=
∑n
i=1 y

2
i − wMLEλnµn

n
. λnµn = λn

∑n
i=1 xiyi + λ0µ0

λn
=

n∑
i=1

xiyi

= 1
n

(
n∑
i=1

y2
i − wMLE

n∑
i=1

xiyi

)

= 1
n

n∑
i=1

(y2
i − wMLExiyi)

= 1
n

n∑
i=1

(y2
i − ŷiyi)

= 1
n

n∑
i=1

(y2
i − 2ŷiyi + ŷ2

i )− 1
n

n∑
i=1

(ŷ2
i − ŷiyi)

= 1
n

n∑
i=1

(yi − ŷi)2 − 1
n

n∑
i=1

(ŷ2
i − ŷiyi)
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The first term 1
n

∑n
i=1(yi− ŷi)2 is a sample average estimate of the variance σ, using ŷi as an

estimate of E[Y |xi]. The second term reflects the additional variance due to the observed
features themselves and the covariance between X and Y . The term 1

n

∑n
i=1 ŷ

2
i is a sample

average estimate of the variance of the prediction, because an estimate of the variance is
given by 1

n

∑n
i=1 ŷ

2
i − ( 1

n

∑n
i=1 ŷi)2 and

1
n

n∑
i=1

ŷi = 1
nwMLE

n∑
i=1

xi

= wMLE
1
n

n∑
i=1

xi = 0

because the data is centered, i.e., 1
n

∑n
i=1 xi = 0. This variance is subtracted from the

noise variance estimate, because we want to remove the influence of the feature variance on
our estimate of the noise variance. The second term 1

n

∑n
i=1−ŷiyi is a sample covariance

between the prediction and the observed target. This covariance needs to be added to
the above, to account for the fact that ŷi is not an independent estimate of E[Y |xi]—it is
correlated with yi because it uses that data to get the estimate.

Now we can see how to maintain a distribution over w and the noise variance σ. The
next step is to further generalize, to vector weights w. The updates are similar to above,
but require matrix inversions, so we leave them for a future course.
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Chapter 12

Generalization Bounds

Note: This chapter is optional reading.
In this chapter, we provide theoretical to better evaluate the properties of learning

algorithms. We begin with some basic finite-sample theoretical results, that relate the
complexity of the model class to the number of samples required to obtain a reasonable
estimate of expected error (generalization error). The area dealing with these types of
theoretical characterizations is called statistical learning theory. We will discuss one result
using concentration inequalities and Rademacher complexity to characterize model-class
complexity; for further information, you could consider this tutorial on the topic [6].

12.1 A Brief Introduction to Generalization Bounds
Our goal throughout this book has been to obtain a function, based on a set of examples,
that predicts accurately: produces low expected error across the space of possible examples.
We cannot, however, measure the expected error. Statistically, we know that with a suffi-
cient sample, we can approximate an expectation. Here, we quantify this more carefully for
learned functions.

Our goal more precisely is to select a function from a function class F to minimize a
loss function ` : R× R→ [0,∞) in expectation over all pairs (x, y)

min
f∈F

E[`(f(X), Y )].

For example, in linear regression, F = {f : Rd → R | f(x) = x>w, for any w ∈ Rd}. This
space of functions F represents all possible linear functions of inputs x ∈ Rd, to produce a
scalar output. Our goal in linear regression was to minimize a proxy to the true expected
error, i.e., the sample error: 1

n

∑n
i=1 `(f(xi), yi). Now a natural question to ask is: does this

sample error provide an accurate estimate of the true expected error? And what does it
tell us about the true generalization performance, i.e., true expected error?

Let’s start with a simple example, using linear regression. Assume a bounded function
class F , where F = {f : Rd → R | f(x) = x>w, for any w ∈ Rd such that ‖w‖2 ≤ Bw}
for some finite scalar Bw > 0. Assume the input features come from a bounded space,
such that for all x, ‖x‖2 ≤ Bx for some finite scalar Bx > 0, and further that the outputs
y ∈ [−By, By] for some By > 0. Assume we use loss `(ŷ, y) = 1

2(ŷ − y)2, which is (locally)
Lipschitz continuous for our bounded region, with Lipschitz constant c = By +BxBw. This
is because |ŷ| ≤ BxBw and∣∣∣∣d`(ŷ, y)

dŷ

∣∣∣∣ = |ŷ − y| ≤ |ŷ|+ |y| ≤ By +BxBw.
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Further, because y ∈ [−By, By], we know the loss is bounded as

`(ŷ, y) = 1
2(ŷ − y)2 ≤ 1

2(B2
y +B2

xB
2
w).

For approximate error

Êrr(f) = 1
n

n∑
i=1

`(f(xi), yi)

and true error

Err(f) = E[`(f(X), Y )] =
ˆ
X×Y

p(x, y)`(f(x), y)dxdy

using Equation 12.2 below, we get that with probability 1− δ, for δ ∈ (0, 1],

Err(f) ≤ Êrr(f) + 2cBxBw√
n

+ 1
2(B2

y +B2
xB

2
w)

√
ln(1/δ)

2n . (12.1)

With increasing samples n, the second two terms disappear and the sample error ap-
proaches the true expected error. This bound show the rate at which this discrepancy dis-
appears. For a higher confidence—small δ making ln(1/δ) larger—more samples are need
for the third term to be small. This third term is obtained using concentration inequalities,
which enable us to state the rate at which a sample mean gets close to its expected value.
For possibly large values of features or learned weights, the second term can be big and can
again require the more samples. The second term reflects the properties of our function
class: a simpler class, with small bounded weights, can have a more accurate estimate of
the loss on a smaller number of samples. More generally, this complexity measure is called
the Rademacher complexity.1 For the linear functions above, with bounded `2 norms for x,
w, the Rademacher complexity is bounded as Rn(F) ≤ BxBy/

√
n (see [10, Equation 3]).

In the next few sections, we provide a generalization result for more general functions,
as well as required background to determine that result.

12.2 Complexity of a function class
Rademacher complexity of a function class characterizes the overfitting ability of functions,
on a particular sample. Function class that are typically more complex are more likely
to be able to fit random noise, and so have higher Rademacher complexity. The empirical
Rademacher complexity, for a sample {z1, . . . , zn}—where typically we consider zi = (xi, yi)
— is defined as2

R̂n(F) = E
[
max
f∈F

1
n

n∑
i=1

σif(xi)
]

1If you have heard of VC dimension, we will discuss the connection between Rademacher and VC dimen-
sion below. They both play a role in identifying the complexity of a function class.

2Here we are being a bit loose and using maximum instead of supremum, to avoid burdening the reader
with new terminology. We usually deal with function classes F where using the supremum is equivalent
to using the maximum. The supremum is used when a set does not contain a maximal point (e.g., [0, 1)),
where the supremum provides the closest upper bound (e.g., 1 for [0, 1)).
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where the expectation is over i.i.d. random variables σ1, . . . , σn chosen uniformly from
{−1, 1}. This choice reflects how well the function class can correlate with this random noise.
Consider for example if f(x) predicts 1 or -1, as in binary classification. If there exists a
function in the class of functions that can perfectly match the sign of the randomly sampled
σi, then that function produces the highest value

∑n
i=1 σif(xi). The empirical Rademacher

complexity for a function class is high, if for any randomly sampled σi, there exists such
a function within the function class (can be a different function for each σ1, . . . , σn). The
Rademacher complexity is the expected empirical Rademacher complexity, over all possibly
samples of n instances.

For function classes with high Rademacher complexity, error on the training set is un-
likely to be reflective of the generalization error, until there is a sufficient number of samples.
This is reflected in the generalization bound in Section 12.3.

Connection to VC dimension: The complexity of a function class can also be char-
acterized by the VC dimension. The idea of VC dimension to characterize the number of
points that can be separated (or shattered) by a function class. Simple functions have low
VC dimension, because they are not complex enough to separate many points. More com-
plex functions, that enable complex boundaries, have higher VC dimension. For example,
for functions of the form f((x1, x2)) = sign(x1w1 + x2w2 + w0), the VC dimension is 3;
more generally, for x ∈ Rd, the VC dimension is d + 1. VC dimension is a similar idea to
Rademacher complexity, but it is restricted to binary classifiers. For this reason, we directly
discuss the Rademacher complexity, which for binary classifiers can be bounded in terms of
the VC dimension. By Sauer’s Lemma, we can typically bound the Rademacher complexity
of a hypothesis class by

√
2VC-dimension lnn

n .

12.3 Generalization Bound for General Function Classes
The generalization bound for a class of models can be obtained by combining the con-
centration inequalities to bound deviation from the mean for fewer samples, and using the
Rademacher complexity to bound the difference between the sample error and true expected
error across all functions in the function class. We additionally need to restrict the set of
losses. We assume that the losses are Lipschitz with constant c, meaning that they do not
change too quickly in a region, with c indicating the rate of change. Further, we also assume
that the loss is bounded by b, i.e., attains values in [−b, b]. As above, if {z1, . . . , zn} is i.i.d.,
then with probability 1− δ, for every f ∈ F ,

E[`(f(X), Y )] ≤ 1
n

n∑
i=1

`(f(xi), yi) + 2cRn(F) + b

√
ln(1/δ)

2n (12.2)

For a more precise theorem statement and a proof, see [3, Theorem 7] and [10, Theorem 1].
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