L ogistics

« Assignment #4 is due April 11 (this Thursday) at 11:59pm
e |ate submissions for 20% deduction until April 15 at 11:59pm

 SPOT (formerly USRI) surveys are now available
e Available until April 14 at 11:59pm
e You should have gotten an emalil

 Please do fill one out, even if you weren't here for today's
lecture


https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
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Goal Recognition
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Goal Recognition

A Goal Recognition Model:

e Trying to identify the goal of an agent based on its observations :

P(G|O)=aP(O|G)P(G)

e P(G) is the probability that G is the true goal (assumed to be given)

e« P(O|G) is the probability that we observe O given than G is the true
goal

 Based on the cost of the trajectory observed so far
* The closer its cost to the optimal cost, the larger the probability

Ramirez and Geffner: Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners. AAAI 2010
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Goal Recognition
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Goal Recognition
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Goal Recognition
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Goal Recognition

e Applications:
e Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

HMM RESULTS:
Follow:
tracking 0.91
0.00
Meet:
0.09
0.00
Pass:
0.00
0.00

Tavakkoli, Kelley, King, Nicolescu, Nicolescu, and Bebis. A vision-based architecture for intent recognition. International Symposium on Advances in Visual Computing 2007
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Goal Recognition

e Applications:
e Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

HMM RESULTS:
Follow:

Meet

I ) & 4

Pass

oo oo eo
P
S ON 0O

Tavakkoli, Kelley, King, Nicolescu, Nicolescu, and Bebis. A vision-based architecture for intent recognition. International Symposium on Advances in Visual Computing 2007
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Goal Recognition

e Applications:
e Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

HMM RESIULTS:
Follow:

Meet:

Pass:

oo OO CO
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et > 1" * B e

Tavakkoli, Kelley, King, Nicolescu, Nicolescu, and Bebis. A vision-based architecture for intent recognition. International Symposium on Advances in Visual Computing 2007
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Goal Recognition

e Applications:
e Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]
e Software personal assistants [Oh et al., 2010, 2011]

2

>

=i

- _
|

3 |

Source: http://assets.pewresearch.org/
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Goal Recognition

e Applications:
e Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]
e Software personal assistants [Oh et al., 2010, 2011]

* [ntelligent tutoring systems [McQuiggan et al., 2008; Johnson, 2010;
Min et al., 2014]

Source: http://projects.intellimedia.ncsu.edu/crystalisland/
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Goal Recognition

e Applications:
e Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]
e Software personal assistants [Oh et al., 2010, 2011]

* [ntelligent tutoring systems [McQuiggan et al., 2008; Johnson, 2010;
Min et al., 2014]

e Security applications [Jarvis et al., 2005]
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Goal Recognition

e Goal Recognition Design (GRD):
e [ntroduced by Sarah Keren, Avigdor Gal, Erez Karpas at ICAPS 2014
e How to modify/design the underlying environment to improve goal
recognition?

* Orthogonal to goal recognition; advances made will complement
advances in goal recognition
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Goal Recognition Design

B G1

e Assumptions:
 Agent acts optimally
 Environment is fully observable
* Agent’s action outcomes are deterministic

Keren, Gal, and Karpas: Goal Recognition Design. ICAPS 2014
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Goal Recognition Design

G2
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e Assumptions:
 Agent acts optimally

]

Maximum ambiguous

steps: 3

 Environment is fully observable
* Agent’s action outcomes are deterministic

Keren, Gal, and Karpas: Goal Recognition Design. ICAPS 2014
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D D ]
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Maximum ambiguous
steps: 3

e Assumptions:
 Agent acts optimally
 Environment is fully observable
* Agent’s action outcomes are deterministic

Keren, Gal, and Karpas: Goal Recognition Design. ICAPS 2014
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Maximum ambiguous Maximum ambiguous
steps: 3 steps: 0

* High-level idea:

* Assess the difficulty of the problem using a metric called worst-case
distinctiveness (wcd)

e Find minimal modification to the environment that minimizes wecd

e subject to requirement that optimal cost to each goal remains
unchanged

Keren, Gal, and Karpas: Goal Recognition Design. ICAPS 2014
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Stochastic GRD

e Goal Recognition Design (GRD):
 Agent acts optimally
 Environment is fully observable
e Agent’s action outcomes are deterministic

e Stochastic GRD (S-GRD):
e Agent acts optimally
 Environment is fully observable
 Agent’s action outcomes are stochastic
* [Important in some applications (e.g., robotic, cybersecurity, etc.)

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

e Goal Recognition Design (GRD):
 Agent acts optimally
 Environment is fully observable
e Agent’s action outcomes are deterministic

e Stochastic GRD (S-GRD):
* Agent acts optimally
 Environment is fully observable
 Agent’s action outcomes are stochastic

* [Important in some applications (e.g., robotic, cybersecurity, etc.)
* ...and in some wizarding worlds!!

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

y Dumbledore’s private library

dormitories

dining halls

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

 Key observations:
e Set of possible goals depends on the observed path to the state
* wcd computation is no longer Markovian in the original state space

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Stochastic GRD

dl
{1,2}
0.5
d3
S >
0,172 {02}

* Approach: Model the problem using augmented MDPs

* wcd computation is now Markovian in the augmented state space
e Use standard MDP algorithms (e.g., VI) to compute wcd

e Agent can take max of two actions without revealing its goal (wcd = 2)
e Paths: So, Ao, S1, A1, S22 —OrF —  So, Ao, S2, A3, S3

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. [|CAI 2016
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Partially-Observable S-GRD

Wayllace

Goal Recognition Design (GRD):
 Agent acts optimally

 Environment is fully observable

e Agent’s action outcomes are deterministic

Stochastic GRD (S-GRD):
 Agent’s action outcomes are stochastic

Partially-Observable S-GRD (S-GRD):
 Agent’s action outcomes are stochastic
e Environment is partially-observable

e agent actions are not observable; states are partially observable
more realistic in some applications (robotics, navigation, etc.)

, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, fully-observable states

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD
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Setting: Unobservable actions, fully-observable states

wcd = max (0.9%0 + 0.1%2 forag, 0970 + 0.1*2 fora;) =02

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, partially-observable states
wcd = max (0.9%0 + 0.1%2 forag, 0970 + 0.1*2 fora;) =02

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, partially-observable states
wcd = max (0.9%2 + 0.1%2 forag, 09%0 + 0.1*%2 fora;) =2

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Partially-Observable S-GRD

Setting: Unobservable actions, partially-observable states
wcd = max (0.9%0 + 0.1*2 forag, 0.9%0 + 0.1*%2 fora;) = 0.2

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Data-Driven GRD

Literature

' Keren et al. (CAPS 2014)

Keren et al. (AAAI 2015)
Son et al. (AAAI 2016)
Keren et al. (AAAI 2016)
Keren et al. (IJCAI 2016)
Wayllace et al. (IJCAI 2016)
Ang et al. (IJCAI 2017)

Suboptimal
Agent

. Wayllace et al. ((JCAI 2017)

Keren et al. (ICAPS 2018)
Keren et al. (JAIR 2018)

Wayllace et al. (AAAI 2019) VA

. Wayllace et al. (ECAI 2020)
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Data-Driven GRD

Partially

CiilhAarntirnanal Ct+tAanlhAantina AN AdiAan CAnrnAnA~r AN AdiAn

Common Assumption:
Uses a worst-case measure (across all possible agent
behaviors) for the difficulty of the goal recognition problem

The worst-case measure often does not reflect

- the expected agent behavior, especially if agent is human

_ Also computationally expensive and does not scale well
' Wayllace et al. (IJCAI 2017) _ — v

Keren et al. (ICAPS 2018)

S <G

v
v

Keren et al. (JAIR 2018)

< <
i< < <[q

Wayllace et al. (AAAI 2019) v 7_ o o

. Wayllace et al. (ECAI 2020)

O L e o G o S o R e S S e T
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Data-Driven GRD

Partially

CiilhAarntirnanal Ct+tAanlhAantina AN AdiAan CAnrnAnA~r AN AdiAn

Common Assumption:

‘ Kere .
. Uses a worst-case measure (across all possible agent
Kel

behaviors) for the difficulty of the goal recognition problem
Sc

Ker R
The worst-case measure often does not reflect

the expected agent behavior, especially if agent is human

Ker

Wayl
Ar Also computationally expensive and does not scale well

[ Vvay”n,\,\ ~dt ~1 (1L NN NONA 7\ y 4 y 4
z

Kert Data-Driven GRD:
Kel Use a data-driven approach to learn a predictor for the
ey expected difficulty of the problem for a variety of agent

~7.~_\‘/ygg} behaviors, including human behavior )
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Data-Driven GRD

e Predictive Module:

e Curate a training dataset: Tuplets of environment, behavior, and wcd

e Behaviors: Optimal, bounded suboptimal, human
* Collected human behavioral data for navigating to a goal in a grid
* Trained a multilayer perceptron model to predict the next action

e CNN-based model that takes as input an environment and outputs a
predicted wad

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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Data-Driven GRD

e Predictive Module:

e Curate a training dataset: Tuplets of environment, behavior, and wcd
e Behaviors: Optimal, bounded suboptimal, human

e CNN-based model that takes as input an environment and outputs a
predicted wcd

e Design Module:

e Transforms the GRD problem into an unconstrained optimization
problem using Lagrangian relaxation:

L =wcdWw’, h) + A(c(w,w’) — B)

e wcd(w', h): wed of environment w’ with behavioral model &
 c(w,w’): cost of changing current environment w to environment w’
e B:cost budget

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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Data-Driven GRD

e Predictive Module:

e Curate a training dataset: Tuplets of environment, behavior, and wcd
e Behaviors: Optimal, bounded suboptimal, human

e CNN-based model that takes as input an environment and outputs a
predicted wcd

e Design Module:

e Transforms the GRD problem into an unconstrained optimization
problem using Lagrangian relaxation:

L =wcdWw’, h) + A(c(w,w’) — B)

 Perform gradient descent on the relaxed Lagrangian; at each step:
* obtain a vector of possible changes and their magnitude

* select element with the highest gradient value and make the corresponding
change

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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Data-Driven GRD

e User Study: Accuracy of human goal inference:

e Does modifying the environment to reduce predicted wcd result in
environments that are easier for humans to infer goals?

e (Generated 30 initial environments
 Modified them using:
* Greedy: Using predicted wcd from our predictive module

 Proposed (opt-bhvr): Using our design module, but assuming
optimal agent behavior

e Proposed (data-driven): Using our predictive and design modules
e Asked users to guess the goal of the observed agent

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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Data-Driven GRD

—t— Original

—+— Proposed(opt-bhvr)
— Greedy

—+— Proposed(data-driven)
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% of observed actions

e Data-driven approach allows users to more accurately guess the goal of
the observed agent

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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Conclusions

e Goal Recognition:
e Seek to identify the goal G of an agent based on its observations O

e Goal Recognition Design (GRD):

e Seek to modify/design the underlying environment to improve goal
recognition

 Orthogonal to goal recognition; advances made will complement
advances in goal recognition

 Partially-Observable Stochastic GRD:

e Generalizes GRD to partially-observable environments and stochastic
action outcomes

e Data-Driven GRD:
e Uses ML to account for human behaviors in GRD
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SPOT Survey Time [15min]

(I'll leave the room for 15 minutes)
Use this link to fill in the SPOT survey:

https://p20.courseval.net/etw/ets/et.asp?

nxappid=UA2&nxmid=start



https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
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