Function Approximation &
Policy Gradient Methods

CMPUT 261: Introduction to Artificial Intelligence

I A L R A

| ecture Outline

Recap & Logistics
After this lecture, you should be able to:

Parameterized Value Functions e explain why function approximation is useful
» define tile coding
e explain the difference between action-value and policy

Gradient Descent

Approximation Schemes gradient methods for control
» state the Policy Gradient Theorem and explain why it is
Parameterized Policies important

* trace an execution of the REINFORCE algorithm

Policy Gradient Theorem

REINFORCE algorithm

| ogistics

 Assignment #4 is due April 11 at 11:59pm

e |[ate submissions for 20% deduction until April 15 at 11:59pm

 SPOT (formerly USRI) surveys are now available

* Available until April 14
* You should have gotten an emalll
* Next week:
* [uesday: Guest lecture on Goal recognition design

* Thursday: Game theory for multiagent systems

http://url5919.courseval.net/ls/click?upn=2x5I4f-2FLD7CML1Y-2F6w08Z-2BZKpQ5Kg3mPkNRp729LFbeJS7OU7gcqLl9wcNAY74E1DdlUHphQdKzAc0sxqWgWYuZMoVph-2B4uFupIh1ZzLTPI-3DIIAh_tfLrf-2BOt7P6wE-2B1cnvWSGxbRHGv3a4ooeTWXvknF8sR-2BniARkHEI7JiXmvDggNkF0LJuKLX4XefUVoJjaMwfX4ZBeP1E9qs5lSdS0Cu9tZPbXElXD4gTGWncuk8c69Yehhcn-2FEhJ1bHEKJdpXDVXP3O-2BX17gTWljxhJyAviaTie91141tuiZDXsLfQFvY1cK-2BAjogTQBw-2B4IZRXZoecigA-3D-3D

Recap: D Learning

Temporal Difference Learning bootstraps and learns from experience

* Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

 Monte Carlo learns from experience, but doesn't bootstrap

Prediction: TD(0) algorithm

Sarsa estimates action-values of actual e-greedy policy

Q-Learning estimates action-values of optimal policy while executing an
e-greedy policy

labular Value Functions

We have been assuming a tabular representation for value function
estimates V(s) and Q(s, a)

» \We can separately set the value of V(s) or O(s, a) for every possible
sE€JS anda € A

This implicitly means that we must store a separate value for every possible
iNnput for the value function

Question: \What should we do if there are too many states to store a value
for each? (e.qg., pixel values in the Atari setting)

Question: \WWhat should we do if the state isn't fully observable”

Example: Number Line Walk

W) () (o0)r () . (o)~

n(als)=0.5 Vse S, ae {left, right}

* Question: Would dynamic programming, Monte Carlo, or TD(0) work to
estimate v_"?

* Question: How much storage would that require?

 Question: \What could we do instead?

(Image: Sutton & Barto, 2018)

Parameterized Value Functions

A parameterized value function's values are set by setting the values of a
weight vector w € | d.

V(s, W) = v ()
vV could be a linear function: w is feature weights for state features Xx(s)

vV could be a neural network: w is weights, biases, kernels, etc.

« Many fewer weights than states: d <K | &’
* (Changing one weight changes the estimated value of many states

 Updating a single state generalizes to affect many other states’ values

Decoupled Estimates

e \With tabular estimates:

* (Can update the value of a single state individually

* Estimates can be exactly correct for each state

 [or parameterized estimates:

e [Esi
sta

Mmalt
5

es cannot necessarily be cor

rect for each state (e.g., when two

nave identical features but dif

erent values)

* (Cannot independently adjust state values

Prediction Objective

Since we cannot guarantee that every state will be correct, we must
trade off estimation quality of one state vs. another

We will use a distribution u(s) to specify how much we care about the
guality of our value estimate for each state

We will optimize the mean squared value error:
_) ’ A P
VE(W) =) u(s)[v,(s) — (s, W)
SES

Note: If we knew v_, this would be a supervised learning problem with a
loss of VE

Question: \What should we use for u(s)?

Stochastic Gradient Descent with
KNown lrue Values

e Suppose we are given a new example: (St, vﬂ(St))

 How should we update our weight vector w?

» Stochastic Gradient Descent: After each example, adjust weights a tiny bit in

direction that would most reduce error on that example:
target

1 —
Wit = W= zaV ()] 08, w)|

1 2 . . 2
= W, = @V [(1,(5))% = 20,(S)0(S, W) + (3(S, W)

=W, 4+« [vﬂ(St) — V(S Wt)] Vi(s,w,)

Stochastic Gradient Descent with
Unknown True Values

» If we knew v_(s), we would be done!
e Instead, we will update toward an approximate target U,
W < W+ a|U=0S,w)| Vis, w,)

« U, can be any of our update targets from previous lectures

Gradient Monte Carlo

+ Monte Carlo target: U, = G,

» U, is an unbiased estimate of v _(S)): E[U,|S, = s] = v_(s)

Gradient Monte Carlo Algorithm for Estimating v = v,

Input: the policy 7w to be evaluated
Input: a differentiable function 9 : § x R? — R
Algorithm parameter: step size a > 0

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode Sg, Ao, R1,51,A1,..., Ry, ST using ©
Loop for each step of episode, t =0,1,...,7T — 1:
W W+ |Gy — 0(S,w)| VO (Se,w)

State Aggregation
B (@) (@) (o) o ()

n(als) =0.5 Vse &, a e {left, right}

One easy way to reduce the memory usage for a large state space is to aggregate
states together

In the Number Line Walk example, we could group the states into 10 groups of 100 states each

W Is a 10-element vector

S
V(S, W) = W_,, wh =
V(s, W) «(s)» Where x(s) LOOJ

(Image: Sutton & Barto, 2018)

State Aggregation Performance

1 ™~ T ”
"'--—--._
I ¥
M
— 1 i l._‘] -
1 O

State

10.0137

Distribution
scale

10.0017

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).

(Image: Sutton & Barto, 2018)

| Inear Approximation

very state s € & is assigned a feature vector X(s)

X(s) = (x1(8), %5(8), ..., x4(5))

State-value function approximation:

d
D(s, w) = w x(s) = 2 W.x.(s)
i=1

Gradient is easy: Vi(s, w) = X(s)
Gradient updates are easy: W, | < W, + [Ut — (s, Wt)] X($)

State aggregation is a special case of linear approximation (why?)

Feature Construction:
Coarse Coding

Divide state space up into overlapping cells

One indicator feature for each cell, set to 1 If
the state Is In the cell

This Is another form of state aggregation

Updating one state generalizes to other states
that share a cell

Narrow generalization Broad generalization

(Image: Sutton & Barto, 2018)

Tile Coding

* [he most practical form of coarse coding

* Use multiple tilings that are offset

Tiling 2
Tiling 3
. Tiling 4
Continuous T
2D state
. I
I o
\ Point in
state space
to be
represented

. —Tilingl —

Partition state space into a uniform grid called a tiling

= — —p— = o

__/a_i____.

Four active
——— tiles/features
overlap the point

_; and are used to

represent it

(Image: Sutton & Barto, 2018)

Approaches to Control

1. Action-value methods (all previous approaches)

» Learn the value of each action in each state: g (s, a)

. Pick the max-value action (usually): arg max g (s, a)
a

2. Function approximation (just now)
 Prediction: Learn the parameters w of state-value function v(s, w)
 Control: Learn the parameters w of action-value function g(s, w)

3. Policy-gradient methods (rest of today)

 Learn the parameters @ of a policy z(a | s, 0)

 Update by gradient ascent in performance

Parameterized Policles

» The action probabilities of a parameterized policy 7(a | s, 0) are set by
setting the values of a parameter vector @ € R?

« Common approach: softmax in action preferences

 Learn an action preference function A(s, a, 0)

e Softmax over action preferences gives action probabilities:
eh(s,a,é’)

n(als,) =
(‘) Za, eh(s,a/,e)

Action Preferences

* Question: What functional forms can we use for action preferences?

» Anything we could have used for V:

* Linear approximations:

d
h(s,a,0) = 07x(s) =) Ox(s)
=1

* |ncluding state aggregation, coarse coding, tile coding

 Neural network: 8 are weights, offsets, kernels, etc.

Parameterized Policies Advantage:
Deterministic Action

The optimal policy 7*(a | s) = arg max g*(s, a) is typically deterministic
a

If we run an e-soft policy, we cannot get to an optimal policy
» Every action is played either with probability € or (1 — €)

Softmax in action preference policies can learn arbitrary probabilities, because h(s, a, 0) is
completely unconstrained:

eh(s,aﬂ)

als,d) =
ﬂ(|) za, eh(S,a,,H)

Question: How can a softmax in action preferences policy converge to a deterministic policy?

Question: Can you get the same results with A(s, a, 8) = g(s, a, 8)? (why?)

Example:

Switcheroo Corridor

Actions left and right have usual effect

11.6
20k

Except in one state they are reversed!

Function approximation makes all the

Optimal policy is stochastic, with 80|

Pr(right) ~ 0.59

100},

But e-greedy policies can only pick
Pr(right) of € or (1 — ¢€)!

40 |

states look identical sol

e-greedy left

optimal
stochastic

policy
£-greedy right

S |=l—-—| G

0

0.1

0.2

013 Of4 015 Of6 Of? Of8 Oi9 1I
probability of right action

(Image: Sutton & Barto, 2018)

Parameterized Policies Advantage:
Stochastic Actions

* Optimal policies are deterministic, but only when there is no state aggregation

 When function approximation makes states look the same, or when states are

Imperfectly observable, the optimal policy might be an arbitrary probability
distribution

* Parameterized policies can represent arbitrary distributions

» Although not necessarily arbitrary distributions in every possible state (why not?)

Policy Performance

» \We choose the policy parameters @ in order to maximize the performance
of the policy: J(60)

» Question: \What should J(@) be in episodic cases?

 EXxpected returns to the policy specified by 6:

JO)=E, G|

» With special single starting state s,

J(0) = v, ()

Policy Gradient Ascent

1. Want to maximize performance: J(6) = v, (sy)

2. Gradient gives direction that J increases: V ,J(0)

3. Update parameters in direction of the gradient:

0,1 < 0,+aVyJ,)

=0+ alV Ve (50

Policy Gradient Theorem

» The gradient of the policy VJ(0) is just the gradient of the value function
with respect to the policy vﬂe(so)

 But we don't know the gradient of the value function!

Policy Gradient Theorem:

VJ(0) Z u(s) Z q.(s,a)Vnr(als,O)

policy

Monte Carlo Policy Gradient

VJ(O) Z u(s) Z g.(s,a)Vr(als,0) Y Pris)f(s) = ELAS)]

[Zqﬂw a)V(als, e)]

Zq(S a)Vr(alS, o) mal 3,)
" ﬂ(a‘St,H)

Vr(als, 0)
71'(61 | Sta 9)

(S A) Vﬂ(At‘SP 0)
I t ﬂ(Atlsta 0)

g [G V(A,|S, 3)]

[Z n(als,, 0)q,. (S, a)) Pr(a)f(a) = E[f(A)]

E |E[f(A)]] = E[LAA)]

" (A8, 0)

Monte Carlo Policy Gradient
Algorithm: REINFORCE

Vr(A,|S, o)

REINFORCE Update: 6,

t ﬂ(At ‘ Sta Ht)

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for r,

Input: a differentiable policy parameterization mw(als, 0)
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € R% (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,57_1, Ar_1, R, following n(-|-, 0)
Loop for each step of the episode t =0,1,...,7 — 1:
G — Sjtlf—t—l—l ’Yk_t_le
0+ 0+ ay'GVInn(A:S, 0)

Vr(AlS,0) ioibilicy function” <v1 Vx)
eligiDllt unction nx =—m—
2A]S,0) et

Go

Total reward
on episode

averaged over 100 runs

10~

20
_40 |-

" (I
-60 i [N

-80

-90—I

REINFORCE Performance
N Switcheroo Corridor

o = 2717

| | | | |
200 400 600 800 1000
Episode

(Image: Sutton & Barto, 2018)

Summary

It is often impractical to track the estimated value for every possible state and/or action

Parameterized value function 9(s, W) uses weights w € R to specify the values of states
* Weights can be set using gradient descent and semi-gradient descent

All our previous control algorithms were action-value methods

1. Approximate the action-value g*(s, a)
2. Choose maximal-value action at every state
Policy gradient methods:
1. Represent policies using parametric policy z(s | a, 6)
2. Directly optimize performance J(6) by adjusting &

Policy Gradient Theorem lets us restate J(6) in terms of quantities that we know (V 7) or can

approximate (q_)

REINFORCE uses a particular estimation scheme for policy gradients

