
Function Approximation &
Policy Gradient Methods

CMPUT 261: Introduction to Artificial Intelligence 
 

S&B §9.0-9.5.4, 13.0-13.3

Lecture Outline
1. Recap & Logistics

2. Parameterized Value Functions

3. Gradient Descent

4. Approximation Schemes

5. Parameterized Policies

6. Policy Gradient Theorem

7. REINFORCE algorithm

After this lecture, you should be able to:

• explain why function approximation is useful

• define tile coding

• explain the difference between action-value and policy

gradient methods for control

• state the Policy Gradient Theorem and explain why it is

important

• trace an execution of the REINFORCE algorithm

Logistics
• Assignment #4 is due April 11 at 11:59pm

• Late submissions for 20% deduction until April 15 at 11:59pm

• SPOT (formerly USRI) surveys are now available

• Available until April 14

• You should have gotten an email

• Next week:

• Tuesday: Guest lecture on Goal recognition design

• Thursday: Game theory for multiagent systems

http://url5919.courseval.net/ls/click?upn=2x5I4f-2FLD7CML1Y-2F6w08Z-2BZKpQ5Kg3mPkNRp729LFbeJS7OU7gcqLl9wcNAY74E1DdlUHphQdKzAc0sxqWgWYuZMoVph-2B4uFupIh1ZzLTPI-3DIIAh_tfLrf-2BOt7P6wE-2B1cnvWSGxbRHGv3a4ooeTWXvknF8sR-2BniARkHEI7JiXmvDggNkF0LJuKLX4XefUVoJjaMwfX4ZBeP1E9qs5lSdS0Cu9tZPbXElXD4gTGWncuk8c69Yehhcn-2FEhJ1bHEKJdpXDVXP3O-2BX17gTWljxhJyAviaTie91141tuiZDXsLfQFvY1cK-2BAjogTQBw-2B4IZRXZoecigA-3D-3D

Recap: TD Learning
• Temporal Difference Learning bootstraps and learns from experience

• Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

• Monte Carlo learns from experience, but doesn't bootstrap

• Prediction: TD(0) algorithm

• Sarsa estimates action-values of actual -greedy policy

• Q-Learning estimates action-values of optimal policy while executing an  
-greedy policy

ϵ

ϵ

Tabular Value Functions
• We have been assuming a tabular representation for value function

estimates and

• We can separately set the value of or for every possible
 and

• This implicitly means that we must store a separate value for every possible
input for the value function

• Question: What should we do if there are too many states to store a value
for each? (e.g., pixel values in the Atari setting)

• Question: What should we do if the state isn't fully observable?

V(s) Q(s, a)

V(s) Q(s, a)
s ∈ 𝒮 a ∈ 𝒜

Example: Number Line Walk

• Question: Would dynamic programming, Monte Carlo, or TD(0) work to
estimate ?

• Question: How much storage would that require?

• Question: What could we do instead?

vπ

500 10005011 499
0 0 0 0 0 0 +1-1

π(a |s) = 0.5 ∀s ∈ 𝒮, a ∈ {left, right}

(Image: Sutton & Barto, 2018)

Parameterized Value Functions
• A parameterized value function's values are set by setting the values of a

weight vector :

• could be a linear function: is feature weights for state features

• could be a neural network: is weights, biases, kernels, etc.

• Many fewer weights than states:

• Changing one weight changes the estimated value of many states

• Updating a single state generalizes to affect many other states' values

w ∈ ℝd

̂v(s, w) ≈ vπ(s)

̂v w x(s)

̂v w

d ≪ |𝒮 |

Decoupled Estimates

• With tabular estimates:

• Can update the value of a single state individually

• Estimates can be exactly correct for each state

• For parameterized estimates:

• Estimates cannot necessarily be correct for each state (e.g., when two
states have identical features but different values)

• Cannot independently adjust state values

Prediction Objective
• Since we cannot guarantee that every state will be correct, we must

trade off estimation quality of one state vs. another

• We will use a distribution to specify how much we care about the
quality of our value estimate for each state

• We will optimize the mean squared value error:

• Note: If we knew , this would be a supervised learning problem with a
loss of

• Question: What should we use for ?

μ(s)

VE(w) ≐ ∑
s∈𝒮

μ(s)[vπ(s) − ̂v(s, w)]2

vπ
VE

μ(s)

Stochastic Gradient Descent with
Known True Values

• Suppose we are given a new example:

• How should we update our weight vector ?

• Stochastic Gradient Descent: After each example, adjust weights a tiny bit in
direction that would most reduce error on that example:

(St, vπ(St))
w

wt+1 ≐ wt −
1
2

α∇[vπ(St) − ̂v(St, wt)]2

= wt −
1
2

α∇[(vπ(St))2 − 2vπ(St) ̂v(St, wt) + (̂v(St, wt))2]
= wt + α [vπ(St) − ̂v(St, wt)]∇ ̂v(s, wt)

target

Stochastic Gradient Descent with
Unknown True Values

• If we knew , we would be done!

• Instead, we will update toward an approximate target :

• can be any of our update targets from previous lectures

vπ(s)

Ut

wt+1 ← wt + α [Ut− ̂v(St, wt)]∇ ̂v(s, wt)

Ut

Gradient Monte Carlo
• Monte Carlo target:

• is an unbiased estimate of :

Ut = Gt

Ut vπ(St) 𝔼[Ut |St = s] = vπ(s)

202 Chapter 9: On-policy Prediction with Approximation

these cases we cannot perform the exact update (9.5) because v⇡(St) is unknown, but
we can approximate it by substituting Ut in place of v⇡(St). This yields the following
general SGD method for state-value prediction:

wt+1

.
= wt + ↵

h
Ut � v̂(St,wt)

i
rv̂(St,wt). (9.7)

If Ut is an unbiased estimate, that is, if E[Ut|St =s] = v⇡(St), for each t, then wt is
guaranteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by interaction
(or simulated interaction) with the environment using policy ⇡. Because the true value of
a state is the expected value of the return following it, the Monte Carlo target Ut

.
= Gt is

by definition an unbiased estimate of v⇡(St). With this choice, the general SGD method
(9.7) converges to a locally optimal approximation to v⇡(St). Thus, the gradient-descent
version of Monte Carlo state-value prediction is guaranteed to find a locally optimal
solution. Pseudocode for a complete algorithm is shown in the box below.

Gradient Monte Carlo Algorithm for Estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rd ! R
Algorithm parameter: step size ↵ > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
Loop for each step of episode, t = 0, 1, . . . , T � 1:

w w + ↵
⇥
Gt � v̂(St,w)

⇤
rv̂(St,w)

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St) is used
as the target Ut in (9.7). Bootstrapping targets such as n-step returns Gt:t+n or the DP
target

P
a,s0,r ⇡(a|St)p(s0, r |St, a)[r + �v̂(s0,wt)] all depend on the current value of the

weight vector wt, which implies that they will be biased and that they will not produce a
true gradient-descent method. One way to look at this is that the key step from (9.4)
to (9.5) relies on the target being independent of wt. This step would not be valid if
a bootstrapping estimate were used in place of v⇡(St). Bootstrapping methods are not
in fact instances of true gradient descent (Barnard, 1993). They take into account the
e↵ect of changing the weight vector wt on the estimate, but ignore its e↵ect on the target.
They include only a part of the gradient and, accordingly, we call them semi-gradient
methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear case
discussed in the next section. Moreover, they o↵er important advantages that make them
often clearly preferred. One reason for this is that they typically enable significantly faster
learning, as we have seen in Chapters 6 and 7. Another is that they enable learning to

State Aggregation

• One easy way to reduce the memory usage for a large state space is to aggregate
states together

• In the Number Line Walk example, we could group the states into 10 groups of 100 states each

• is a 10-element vector

• , where

w

̂v(s, w) = wx(s) x(s) = ⌊ s
100 ⌋

500 10005011 499
0 0 0 0 0 0 +1-1

π(a |s) = 0.5 ∀s ∈ 𝒮, a ∈ {left, right}

(Image: Sutton & Barto, 2018)

State Aggregation Performance
204 Chapter 9: On-policy Prediction with Approximation

0

State

Value
scale

 True
value v⇡

 Approximate
MC value v̂

 State distribution
0.0017

0.0137

Distribution
scale

10001

0

-1

1

µ

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).

shown in the figure is typical of state aggregation; within each group, the approximate
value is constant, and it changes abruptly from one group to the next. These approximate
values are close to the global minimum of the VE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution µ for this task, shown in the lower portion of the figure with a
right-side scale. State 500, in the center, is the first state of every episode, but is rarely
visited again. On average, about 1.37% of the time steps are spent in the start state.
The states reachable in one step from the start state are the second most visited, with
about 0.17% of the time steps being spent in each of them. From there µ falls o↵ almost
linearly, reaching about 0.0147% at the extreme states 1 and 1000. The most visible
e↵ect of the distribution is on the leftmost groups, whose values are clearly shifted higher
than the unweighted average of the true values of states within the group, and on the
rightmost groups, whose values are clearly shifted lower. This is due to the states in
these areas having the greatest asymmetry in their weightings by µ. For example, in the
leftmost group, state 100 is weighted more than 3 times more strongly than state 1. Thus
the estimate for the group is biased toward the true value of state 100, which is higher
than the true value of state 1.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which the
approximate function, v̂(·,w), is a linear function of the weight vector, w. Corresponding
to every state s, there is a real-valued vector x(s)

.
= (x1(s), x2(s), . . . , xd(s))>, with the

same number of components as w. Linear methods approximate state-value function by

(Image: Sutton & Barto, 2018)

Linear Approximation
• Every state is assigned a feature vector

• State-value function approximation:

• Gradient is easy:

• Gradient updates are easy:

• State aggregation is a special case of linear approximation (why?)

s ∈ 𝒮 x(s)

x(s) ≐ (x1(s), x2(s), …, xd(s))

̂v(s, w) ≐ wTx(s) =
d

∑
i=1

wixi(s)

∇ ̂v(s, w) = x(s)

wt+1 ← wt + α [Ut − ̂v(s, wt)] x(s)

Feature Construction: 
Coarse Coding

• Divide state space up into overlapping cells

• One indicator feature for each cell, set to 1 if
the state is in the cell

• This is another form of state aggregation

• Updating one state generalizes to other states
that share a cell

9.5. Feature Construction for Linear Methods 215

9.5.3 Coarse Coding

s0

s

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s

0 depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1–0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the e↵ect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
a↵ected by learning. If we train at one state, a
point in the space, then the weights of all circles
intersecting that state will be a↵ected. Thus, by (9.8), the approximate value function
will be a↵ected at all states within the union of the circles, with a greater e↵ect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same
number and density of features.

9.5. Feature Construction for Linear Methods 215

9.5.3 Coarse Coding

s0

s

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s

0 depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1–0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the e↵ect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
a↵ected by learning. If we train at one state, a
point in the space, then the weights of all circles
intersecting that state will be a↵ected. Thus, by (9.8), the approximate value function
will be a↵ected at all states within the union of the circles, with a greater e↵ect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same
number and density of features. (Image: Sutton & Barto, 2018)

Tile Coding
• The most practical form of coarse coding

• Partition state space into a uniform grid called a tiling

• Use multiple tilings that are offset

9.5. Feature Construction for Linear Methods 217

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that is
flexible and computationally e�cient. It may be the most practical feature representation
for modern sequential digital computers.

In tile coding the receptive fields of the features are grouped into partitions of the state
space. Each such partition is called a tiling, and each element of the partition is called a
tile. For example, the simplest tiling of a two-dimensional state space is a uniform grid
such as that shown on the left side of Figure 9.9. The tiles or receptive field here are
squares rather than the circles in Figure 9.6. If just this single tiling were used, then the
state indicated by the white spot would be represented by the single feature whose tile
it falls within; generalization would be complete to all states within the same tile and
nonexistent to states outside it. With just one tiling, we would not have coarse coding
but just a case of state aggregation.

Point in
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous

2D state
space

Four active
tiles/features

overlap the point
and are used to

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These tilings
are o↵set from one another by a uniform amount in each dimension.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with tile coding,
multiple tilings are used, each o↵set by a fraction of a tile width. A simple case with
four tilings is shown on the right side of Figure 9.9. Every state, such as that indicated
by the white spot, falls in exactly one tile in each of the four tilings. These four tiles
correspond to four features that become active when the state occurs. Specifically, the
feature vector x(s) has one component for each tile in each tiling. In this example there
are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will be 0 except for the four corresponding to
the tiles that s falls within. Figure 9.10 shows the advantage of multiple o↵set tilings
(coarse coding) over a single tiling on the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with partitions,
the overall number of features that are active at one time is the same for any state.
Exactly one feature is present in each tiling, so the total number of features present is
always the same as the number of tilings. This allows the step-size parameter, ↵, to
be set in an easy, intuitive way. For example, choosing ↵ = 1

n
, where n is the number

(Image: Sutton & Barto, 2018)

Approaches to Control
1. Action-value methods (all previous approaches)

• Learn the value of each action in each state:

• Pick the max-value action (usually):

2. Function approximation (just now)

• Prediction: Learn the parameters of state-value function

• Control: Learn the parameters of action-value function

3. Policy-gradient methods (rest of today)

• Learn the parameters of a policy

• Update by gradient ascent in performance

qπ(s, a)

arg max
a

qπ(s, a)

w ̂v(s, w)

w ̂q(s, w)

θ π(a ∣ s, θ)

Parameterized Policies
• The action probabilities of a parameterized policy are set by

setting the values of a parameter vector

• Common approach: softmax in action preferences

• Learn an action preference function

• Softmax over action preferences gives action probabilities:

π(a ∣ s, θ)
θ ∈ ℝd′￼

h(s, a, θ)

π(a |s, θ) ≐
eh(s,a,θ)

∑a′￼

eh(s,a′￼,θ)

Action Preferences
• Question: What functional forms can we use for action preferences?

• Anything we could have used for :

• Linear approximations:  

• Including state aggregation, coarse coding, tile coding

• Neural network: 𝜃 are weights, offsets, kernels, etc.

̂v

h(s, a, θ) ≐ θTx(s) =
d

∑
i=1

θixi(s)

9.5. Feature Construction for Linear Methods 215

9.5.3 Coarse Coding

s0

s

Figure 9.6: Coarse coding. Generaliza-
tion from state s to state s

0 depends on
the number of their features whose recep-
tive fields (in this case, circles) overlap.
These states have one feature in common,
so there will be slight generalization be-
tween them.

Consider a task in which the natural repre-
sentation of the state set is a continuous two-
dimensional space. One kind of representation for
this case is made up of features corresponding to
circles in state space, as shown to the right. If
the state is inside a circle, then the corresponding
feature has the value 1 and is said to be present;
otherwise the feature is 0 and is said to be absent.
This kind of 1–0-valued feature is called a binary
feature. Given a state, which binary features are
present indicate within which circles the state lies,
and thus coarsely code for its location. Represent-
ing a state with features that overlap in this way
(although they need not be circles or binary) is
known as coarse coding.

Assuming linear gradient-descent function ap-
proximation, consider the e↵ect of the size and
density of the circles. Corresponding to each cir-
cle is a single weight (a component of w) that is
a↵ected by learning. If we train at one state, a
point in the space, then the weights of all circles
intersecting that state will be a↵ected. Thus, by (9.8), the approximate value function
will be a↵ected at all states within the union of the circles, with a greater e↵ect the more
circles a point has “in common” with the state, as shown in Figure 9.6. If the circles are
small, then the generalization will be over a short distance, as in Figure 9.7 (left), whereas
if they are large, it will be over a large distance, as in Figure 9.7 (middle). Moreover,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the same
number and density of features.

Parameterized Policies Advantage:
Deterministic Action

• The optimal policy is typically deterministic

• If we run an -soft policy, we cannot get to an optimal policy

• Every action is played either with probability or

• Softmax in action preference policies can learn arbitrary probabilities, because is
completely unconstrained:

• Question: How can a softmax in action preferences policy converge to a deterministic policy?

• Question: Can you get the same results with ? (why?)

π*(a ∣ s) = arg max
a

q*(s, a)

ϵ

ϵ (1 − ϵ)

h(s, a, θ)

π(a |s, θ) ≐
eh(s,a,θ)

∑a′￼
eh(s,a′￼,θ)

h(s, a, θ) = ̂q(s, a, θ)

Example:

Switcheroo Corridor

• Actions left and right have usual effect

• Except in one state they are reversed!

• Function approximation makes all the
states look identical

• Optimal policy is stochastic, with

• But -greedy policies can only pick
 of or !

Pr(right) ≈ 0.59

ϵ
Pr(right) ϵ (1 − ϵ)

13.1. Policy Approximation and its Advantages 323

A second advantage of parameterizing policies according to the soft-max in action
preferences is that it enables the selection of actions with arbitrary probabilities. In
problems with significant function approximation, the best approximate policy may be
stochastic. For example, in card games with imperfect information the optimal play is
often to do two di↵erent things with specific probabilities, such as when blu�ng in Poker.
Action-value methods have no natural way of finding stochastic optimal policies, whereas
policy approximating methods can, as shown in Example 13.1.

Example 13.1 Short corridor with switched actions

Consider the small corridor gridworld shown inset in the graph below. The reward
is �1 per step, as usual. In each of the three nonterminal states there are only
two actions, right and left. These actions have their usual consequences in the first
and third states (left causes no movement in the first state), but in the second
state they are reversed, so that right moves to the left and left moves to the right.
The problem is di�cult because all the states appear identical under the function
approximation. In particular, we define x(s, right) = [1, 0]> and x(s, left) = [0, 1]>,
for all s. An action-value method with "-greedy action selection is forced to choose
between just two policies: choosing right with high probability 1 � "/2 on all steps
or choosing left with the same high probability on all time steps. If " = 0.1, then
these two policies achieve a value (at the start state) of less than �44 and �82,
respectively, as shown in the graph. A method can do significantly better if it can
learn a specific probability with which to select right. The best probability is about
0.59, which achieves a value of about �11.6.

probability of right action

-11.6

0.1 0.2

-20

-40

-60

-80

-100
0.3 0.40 0.6 0.7 0.8 0.90.5 1

�-greedy left

�-greedy right

optimal
stochastic

policy

J(✓) = v⇡✓ (S)

GS

Perhaps the simplest advantage that policy parameterization may have over action-
value parameterization is that the policy may be a simpler function to approximate.
Problems vary in the complexity of their policies and action-value functions. For some,
the action-value function is simpler and thus easier to approximate. For others, the policy
is simpler. In the latter case a policy-based method will typically learn faster and yield a
superior asymptotic policy (as in Tetris; see Şimşek, Algórta, and Kothiyal, 2016).

(Image: Sutton & Barto, 2018)

Parameterized Policies Advantage:
Stochastic Actions

• Optimal policies are deterministic, but only when there is no state aggregation

• When function approximation makes states look the same, or when states are
imperfectly observable, the optimal policy might be an arbitrary probability
distribution

• Parameterized policies can represent arbitrary distributions

• Although not necessarily arbitrary distributions in every possible state (why not?)

Policy Performance
• We choose the policy parameters in order to maximize the performance

of the policy:

• Question: What should be in episodic cases?

• Expected returns to the policy specified by 𝜃:

• With special single starting state :

θ
J(θ)

J(θ)

J(θ) ≐ 𝔼πθ [G0]
s0

J(θ) ≐ vπθ
(s0)

Policy Gradient Ascent

1. Want to maximize performance:

2. Gradient gives direction that J increases:

3. Update parameters in direction of the gradient:

J(θ) = vπθ
(s0)

∇θJ(θ)

θt+1 ← θt + α∇θJ(θt)

= θt + α∇θvπθ
(s0)

Oops!

Policy Gradient Theorem

• The gradient of the policy is just the gradient of the value function
with respect to the policy

• But we don't know the gradient of the value function!

Policy Gradient Theorem:

∇J(θ)
vπθ

(s0)

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

on-policy 
stationary 

 distribution

true 
action values

gradient of
policy

Monte Carlo Policy Gradient

∇J(θ) ∝ ∑
s

μ(s)∑
a

qπ(s, a)∇π(a |s, θ)

= 𝔼π [∑
a

qπ(St, a)∇π(a |St, θ)]
= 𝔼π [∑

a

qπ(St, a)∇π(a |St, θ)
π(a |St, θ)
π(a |St, θ)]

= 𝔼π [∑
a

π(a |St, θ)qπ(St, a)
∇π(a |St, θ)
π(a |St, θ)]

= 𝔼π [qπ(St, At)
∇π(At |St, θ)
π(At |St, θ)]

= 𝔼π [Gt
∇π(At |St, θ)
π(At |St, θ)]

∑
s

Pr(s)f(s) = 𝔼[f(S)]

∑
a

Pr(a)f(a) = 𝔼[f(A)]

f(s)

f(a)

𝔼 [𝔼[f(A)]] = 𝔼[f(A)]

Monte Carlo Policy Gradient
Algorithm: REINFORCE

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

✓ ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

∇π(At |St, θ)
π(At |St, θ)

⏟
"eligibility function"

REINFORCE Update: θt+1 ← θt + αGt
∇π(At |St, θt)
π(At |St, θt)

(∇ln x =
∇x
x)

REINFORCE Performance 
in Switcheroo Corridor

328 Chapter 13: Policy Gradient Methods

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for ⇡⇤

Input: a di↵erentiable policy parameterization ⇡(a|s, ✓)
Algorithm parameter: step size ↵ > 0
Initialize policy parameter ✓ 2 Rd

0
(e.g., to 0)

Loop forever (for each episode):
Generate an episode S0, A0, R1, . . . , ST�1, AT�1, RT , following ⇡(·|·, ✓)
Loop for each step of the episode t = 0, 1, . . . , T � 1:

G
P

T

k=t+1
�k�t�1Rk (Gt)

✓ ✓ + ↵�tGr ln ⇡(At|St, ✓)

The second di↵erence between the pseudocode update and the REINFORCE update
equation (13.8) is that the former includes a factor of �t. This is because, as mentioned
earlier, in the text we are treating the non-discounted case (� =1) while in the boxed
algorithms we are giving the algorithms for the general discounted case. All of the ideas
go through in the discounted case with appropriate adjustments (including to the box on
page 199) but involve additional complexity that distracts from the main ideas.

⇤Exercise 13.2 Generalize the box on page 199, the policy gradient theorem (13.5), the
proof of the policy gradient theorem (page 325), and the steps leading to the REINFORCE
update equation (13.8), so that (13.8) ends up with a factor of �t and thus aligns with
the general algorithm given in the pseudocode. ⇤

Figure 13.1 shows the performance of REINFORCE on the short-corridor gridworld
from Example 13.1.

↵ = 2�13

↵ = 2�12

Episode
10008006004002001

-80

-90

-60

-40

-20

-10

Total reward
on episode

averaged over 100 runs

G0

v⇤(s0)

↵ = 2�14

Figure 13.1: REINFORCE on the short-corridor gridworld (Example 13.1). With a good step
size, the total reward per episode approaches the optimal value of the start state.

(Image: Sutton & Barto, 2018)

Summary
• It is often impractical to track the estimated value for every possible state and/or action

• Parameterized value function uses weights to specify the values of states

• Weights can be set using gradient descent and semi-gradient descent

• All our previous control algorithms were action-value methods

1. Approximate the action-value

2. Choose maximal-value action at every state

• Policy gradient methods:

1. Represent policies using parametric policy

2. Directly optimize performance by adjusting

• Policy Gradient Theorem lets us restate in terms of quantities that we know () or can
approximate ()

• REINFORCE uses a particular estimation scheme for policy gradients

̂v(s, w) w ∈ ℝd

q*(s, a)

π(s ∣ a, θ)
J(θ) θ

J(θ) ∇π
qπ

