Function Approximation & Policy Gradient Methods

CMPUT 261: Introduction to Artificial Intelligence

S&B §9.0-9.5.4, 13.0-13.3

Lecture Outline

- 1. Recap & Logistics
- 2. Parameterized Value Functions
- 3. Gradient Descent
- 4. Approximation Schemes
- 5. Parameterized Policies
- 6. Policy Gradient Theorem
- 7. REINFORCE algorithm

After this lecture, you should be able to:

- explain why function approximation is useful
- define tile coding
- explain the difference between action-value and policy gradient methods for control
- state the Policy Gradient Theorem and explain why it is important
- trace an execution of the REINFORCE algorithm

Logistics

- Assignment #4 is due April 11 at 11:59pm
 - Late submissions for 20% deduction until April 15 at 11:59pm
- **SPOT** (formerly USRI) surveys are <u>now available</u>
 - Available until April 14
 - You should have gotten an email
- Next week:
 - Tuesday: Guest lecture on Goal recognition design
 - Thursday: Game theory for multiagent systems

Recap: TD Learning

- Temporal Difference Learning bootstraps and learns from experience
 - Dynamic programming bootstraps, but doesn't learn from experience (requires full dynamics)
 - Monte Carlo learns from experience, but doesn't bootstrap
- Prediction: **TD(0)** algorithm
- Sarsa estimates action-values of actual *ϵ*-greedy policy
- Q-Learning estimates action-values of optimal policy while executing an
 ε-greedy policy

Tabular Value Functions

- We have been assuming a **tabular representation** for value function estimates V(s) and Q(s,a)
 - We can **separately** set the value of V(s) or Q(s,a) for every possible $s \in \mathcal{S}$ and $a \in \mathcal{A}$
- This implicitly means that we **must** store a separate value for every possible input for the value function
- Question: What should we do if there are too many states to store a value for each? (e.g., pixel values in the Atari setting)
- Question: What should we do if the state isn't fully observable?

Example: Number Line Walk

$$\pi(a \mid s) = 0.5 \quad \forall s \in \mathcal{S}, a \in \{\text{left, right}\}$$

- Question: Would dynamic programming, Monte Carlo, or TD(0) work to estimate v_{π} ?
- Question: How much storage would that require?
- Question: What could we do instead?

Parameterized Value Functions

• A parameterized value function's values are set by setting the values of a weight vector $\mathbf{w} \in \mathbb{R}^d$:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

- \hat{v} could be a linear function: w is feature weights for state features x(s)
- \hat{v} could be a **neural network**: **w** is weights, biases, kernels, etc.
- Many fewer weights than states: $d \ll |\mathcal{S}|$
 - Changing one weight changes the estimated value of many states
 - Updating a single state generalizes to affect many other states' values

Decoupled Estimates

- With **tabular** estimates:
 - Can update the value of a single state individually
 - Estimates can be exactly correct for each state
- For parameterized estimates:
 - Estimates cannot necessarily be correct for each state (e.g., when two states have identical features but different values)
 - Cannot independently adjust state values

Prediction Objective

- Since we cannot guarantee that every state will be correct, we must trade off estimation quality of one state vs. another
- We will use a distribution $\mu(s)$ to specify how much we care about the quality of our value estimate for each state
- We will optimize the mean squared value error:

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) \left[v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^{2}$$

- Note: If we knew v_π , this would be a supervised learning problem with a loss of \overline{VE}
- Question: What should we use for $\mu(s)$?

Stochastic Gradient Descent with Known True Values

- Suppose we are given a new example: $(S_t, v_{\pi}(S_t))$
- How should we update our weight vector w?
- Stochastic Gradient Descent: After each example, adjust weights a tiny bit in direction that would most reduce error on that example:

$$\mathbf{w}_{t+1} \doteq \mathbf{w}_{t} - \frac{1}{2} \alpha \nabla \left[v_{\pi}(S_{t}) - \hat{v}(S_{t}, \mathbf{w}_{t}) \right]^{2}$$

$$= \mathbf{w}_{t} - \frac{1}{2} \alpha \nabla \left[(v_{\pi}(S_{t}))^{2} - 2v_{\pi}(S_{t}) \hat{v}(S_{t}, \mathbf{w}_{t}) + (\hat{v}(S_{t}, \mathbf{w}_{t}))^{2} \right]$$

$$= \mathbf{w}_{t} + \alpha \left[v_{\pi}(S_{t}) - \hat{v}(S_{t}, \mathbf{w}_{t}) \right] \nabla \hat{v}(s, \mathbf{w}_{t})$$

Stochastic Gradient Descent with Unknown True Values

- If we knew $v_{\pi}(s)$, we would be done!
- Instead, we will update toward an approximate target U_t :

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha \left[U_t - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)$$

ullet U_t can be any of our update targets from previous lectures

Gradient Monte Carlo

- Monte Carlo target: $U_t = G_t$
- U_t is an unbiased estimate of $v_\pi(S_t)$: $\mathbb{E}[U_t | S_t = s] = v_\pi(s)$

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
```

Input: a differentiable function $\hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T$ using π

Loop for each step of episode, t = 0, 1, ..., T - 1:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

State Aggregation

$$\pi(a \mid s) = 0.5 \quad \forall s \in \mathcal{S}, a \in \{\text{left, right}\}$$

- One easy way to reduce the memory usage for a large state space is to aggregate states together
- In the Number Line Walk example, we could group the states into 10 groups of 100 states each
- w is a 10-element vector

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}_{x(s)}, \text{ where } x(s) = \left| \frac{s}{100} \right|$$

State Aggregation Performance

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task, using the gradient Monte Carlo algorithm (page 202).

Linear Approximation

• Every state $s \in \mathcal{S}$ is assigned a feature vector $\mathbf{x}(s)$

$$\mathbf{x}(s) \doteq (x_1(s), x_2(s), ..., x_d(s))$$

State-value function approximation:

$$\hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^T \mathbf{x}(s) = \sum_{i=1}^d w_i x_i(s)$$

Gradient is easy:

- $\nabla \hat{v}(s, \mathbf{w}) = \mathbf{x}(s)$
- Gradient updates are easy: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha \left[U_t \hat{v}(s, \mathbf{w}_t) \right] \mathbf{x}(s)$
- State aggregation is a special case of linear approximation (why?)

Feature Construction: Coarse Coding

- Divide state space up into overlapping cells
- One indicator feature for each cell, set to 1 if the state is in the cell
- This is another form of state aggregation
- Updating one state generalizes to other states that share a cell

Narrow generalization

Broad generalization

Tile Coding

- The most practical form of coarse coding
- Partition state space into a uniform grid called a tiling
 - Use multiple tilings that are offset

Approaches to Control

- 1. Action-value methods (all previous approaches)
 - Learn the value of each action in each state: $q_{\pi}(s, a)$
 - . Pick the max-value action (usually): $\arg\max q_\pi(s,a)$
- 2. Function approximation (just now)
 - Prediction: Learn the parameters w of state-value function $\hat{v}(s, \mathbf{w})$
 - Control: Learn the parameters ${\bf w}$ of action-value function $\hat{q}(s,{\bf w})$
- 3. Policy-gradient methods (rest of today)
 - Learn the parameters θ of a policy $\pi(a \mid s, \theta)$
 - Update by gradient ascent in performance

Parameterized Policies

- The action probabilities of a parameterized policy $\pi(a \mid s, \theta)$ are set by setting the values of a parameter vector $\theta \in \mathbb{R}^{d'}$
- Common approach: softmax in action preferences
 - Learn an action preference function $h(s, a, \theta)$
 - Softmax over action preferences gives action probabilities:

$$\pi(a \mid s, \theta) \doteq \frac{e^{h(s, a, \theta)}}{\sum_{a'} e^{h(s, a', \theta)}}$$

Action Preferences

- Question: What functional forms can we use for action preferences?
- Anything we could have used for \hat{v} :
 - Linear approximations:

$$h(s, a, \theta) \doteq \theta^T \mathbf{x}(s) = \sum_{i=1}^d \theta_i x_i(s)$$

- Including state aggregation, coarse coding, tile coding
- Neural network: θ are weights, offsets, kernels, etc.

Parameterized Policies Advantage: Deterministic Action

- . The optimal policy $\pi^*(a \mid s) = \arg\max_a q^*(s, a)$ is typically deterministic
- If we run an ϵ -soft policy, we cannot get to an optimal policy
 - Every action is played either with probability ϵ or (1ϵ)
- Softmax in action preference policies can learn arbitrary probabilities, because $h(s, a, \theta)$ is completely unconstrained:

$$\pi(a \mid s, \theta) \doteq \frac{e^{h(s, a, \theta)}}{\sum_{a'} e^{h(s, a', \theta)}}$$

- Question: How can a softmax in action preferences policy converge to a deterministic policy?
- Question: Can you get the same results with $h(s, a, \theta) = \hat{q}(s, a, \theta)$? (why?)

Example: Switcheroo Corridor

- Actions left and right have usual effect
- Except in one state they are reversed!
- Function approximation makes all the states look identical
- Optimal policy is stochastic, with $Pr(right) \approx 0.59$
- But ϵ -greedy policies can only pick $\Pr(\text{right})$ of ϵ or $(1-\epsilon)!$

Parameterized Policies Advantage: Stochastic Actions

- Optimal policies are deterministic, but only when there is no state aggregation
- When function approximation makes states look the same, or when states are imperfectly observable, the optimal policy might be an arbitrary probability distribution
- Parameterized policies can represent arbitrary distributions
 - Although not necessarily arbitrary distributions in every possible state (why not?)

Policy Performance

- We choose the policy parameters θ in order to maximize the **performance** of the policy: $J(\theta)$
- Question: What should $J(\theta)$ be in episodic cases?
- Expected returns to the policy specified by θ :

$$J(\theta) \doteq \mathbb{E}_{\pi_{\theta}} \left[G_0 \right]$$

• With special single starting state s_0 :

$$J(\theta) \doteq v_{\pi_{\theta}}(s_0)$$

Policy Gradient Ascent

- 1. Want to maximize performance: $J(\theta) = v_{\pi_{\theta}}(s_0)$
- 2. Gradient gives direction that **J** increases: $abla_{ heta}J(heta)$
- 3. Update parameters in direction of the gradient:

$$\theta_{t+1} \leftarrow \theta_t + \alpha \nabla_{\theta} J(\theta_t)$$

$$= \theta_t + \alpha \nabla_{\theta} v_{\pi_{\theta}}(s_0)$$

Policy Gradient Theorem

- The gradient of the policy $\nabla J(\theta)$ is just the gradient of the value function with respect to the policy $v_{\pi_{\theta}}(s_0)$
- But we don't know the gradient of the value function!

Policy Gradient Theorem:

Monte Carlo Policy Gradient

$$\nabla J(\theta) \propto \sum_{s} \mu(s) \left[\sum_{a} q_{\pi}(s, a) \nabla \pi(a \mid s, \theta) \right]_{f(s)}$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} q_{\pi}(S_{t}, a) \nabla \pi(a \mid S_{t}, \theta) \right]_{f(s)}$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} q_{\pi}(S_{t}, a) \nabla \pi(a \mid S_{t}, \theta) \frac{\pi(a \mid S_{t}, \theta)}{\pi(a \mid S_{t}, \theta)} \right]$$

$$= \mathbb{E}_{\pi} \left[\sum_{a} \pi(a \mid S_{t}, \theta) q_{\pi}(S_{t}, a) \frac{\nabla \pi(a \mid S_{t}, \theta)}{\pi(a \mid S_{t}, \theta)} \right]_{f(a)}$$

$$= \mathbb{E}_{\pi} \left[q_{\pi}(S_{t}, A_{t}) \frac{\nabla \pi(A_{t} \mid S_{t}, \theta)}{\pi(A_{t} \mid S_{t}, \theta)} \right]$$

$$= \mathbb{E}_{\pi} \left[G_{t} \frac{\nabla \pi(A_{t} \mid S_{t}, \theta)}{\pi(A_{t} \mid S_{t}, \theta)} \right]$$

$$\sum_{S} \Pr(S) f(S) = \mathbb{E}[f(S)]$$

$$\sum_{a} \Pr(a) f(a) = \mathbb{E}[f(A)]$$

$$\mathbb{E}\left[\mathbb{E}[f(A)]\right] = \mathbb{E}[f(A)]$$

Monte Carlo Policy Gradient Algorithm: REINFORCE

REINFORCE Update:
$$\theta_{t+1} \leftarrow \theta_t + \alpha G_t \frac{\nabla \pi(A_t | S_t, \theta_t)}{\pi(A_t | S_t, \theta_t)}$$

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for π_*

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to **0**)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, 1, ..., T - 1:

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \ln \pi (A_t | S_t, \theta)$$

$$(G_t)$$

$$\frac{\nabla \pi(A_t | S_t, \theta)}{\pi(A_t | S_t, \theta)} \quad \text{"eligibility function"} \qquad \left(\nabla \ln x = \frac{\nabla x}{x}\right)$$

REINFORCE Performance in Switcheroo Corridor

Summary

- It is often impractical to track the estimated value for every possible state and/or action
- Parameterized value function $\hat{v}(s, \mathbf{w})$ uses weights $\mathbf{w} \in \mathbb{R}^d$ to specify the values of states
 - Weights can be set using gradient descent and semi-gradient descent
- All our previous control algorithms were action-value methods
 - 1. Approximate the action-value $q^*(s, a)$
 - 2. Choose maximal-value action at every state
- Policy gradient methods:
 - 1. Represent policies using parametric policy $\pi(s \mid a, \theta)$
 - 2. Directly optimize performance $J(\theta)$ by adjusting θ
- Policy Gradient Theorem lets us restate $J(\theta)$ in terms of quantities that we know ($\nabla \pi$) or can approximate (q_{π})
- REINFORCE uses a particular estimation scheme for policy gradients