lemporal Difference Learning

CMPUT 261: Introduction to Artificial Intelligence

1.

o &~ Wb

| ecture Overview

Recap & Logistics

1D Prediction

On-Policy TD Control (Sarsa)

Off-Policy TD Control (Q-Learning)

Expected Sarsa

After this lecture, you should be able to:

trace an execution of the TD(0) algorithm
trace an execution of the Q-learning algorithm
trace an execution of the Sarsa algorithm
define bootstrapping

explain why bootstrapping Is usefu
trace an execution of the Expected Sarsa algorithm
describe the advantages of Expected Sarsa over Sarsa

| ogistics

 Assignment #4 is due April 11 at 11:59pm

* [ate submissions for 20% deduction until April 15 at 11:59pm

 SPOT (formerly USRI) surveys are now available

* Available until April 14

http://url5919.courseval.net/ls/click?upn=2x5I4f-2FLD7CML1Y-2F6w08Z-2BZKpQ5Kg3mPkNRp729LFbeJS7OU7gcqLl9wcNAY74E1DdlUHphQdKzAc0sxqWgWYuZMoVph-2B4uFupIh1ZzLTPI-3DIIAh_tfLrf-2BOt7P6wE-2B1cnvWSGxbRHGv3a4ooeTWXvknF8sR-2BniARkHEI7JiXmvDggNkF0LJuKLX4XefUVoJjaMwfX4ZBeP1E9qs5lSdS0Cu9tZPbXElXD4gTGWncuk8c69Yehhcn-2FEhJ1bHEKJdpXDVXP3O-2BX17gTWljxhJyAviaTie91141tuiZDXsLfQFvY1cK-2BAjogTQBw-2B4IZRXZoecigA-3D-3D

Previous Lecture Summary

Monte Carlo estimation estimates values by averaging returns over sample episodes
* Does not require access to full model of dynamics

 Does require access to an entire episode for each sample

—stimating action values requires either exploring starts or a soft policy (e.g., €-greedy)

Off-policy learning is the estimation of value functions for a target policy based on
episodes generated by a different behaviour policy

 Importance sampling is one way to perform off-policy learning

 Weighted importance sampling has lower variance than ordinary importance
sampling

Off-policy control is [earning the optimal policy (target policy) using episodes from a
behaviour policy

|_earning from Experience

Suppose we are playing a blackjack-like game in person, but we don't
know the rules.

* We know the actions we can take, we can see the cards, and we get
told when we win or lose

Question: Could we compute an optimal policy using
dynamic programming in this scenario”

Question: Could we compute an optimal policy using Monte Carlo?

* \What would be the pros and cons of running Monte Carlo®

Bootstrapping

Bootstrapping bootstrapping
Learns from
experience M C

Requires full
dynamics D P

 Dynamic programming bootstraps: Each iteration's estimates are based
partly on estimates from previous iterations

 Each Monte Carlo estimate is based only on actual returns

Upaates

Dynamic Programming: V(S,) < Z m(als,) Z p(s’,rlS, a) [7” + yV(s ,)]

Monte Carlo: V(S,) < V(S) + a IGt - V(Sz)]

TD(0): V(S,) « V(S) + ’Rt+1 + yV(S,41)|— V(St)]

A

Vo (3) : Jﬂ:Gt ‘ S = 3] Monte Carlo: Approximate because of E

= Er[Rip1 + Gy | Sp=5]

= tW:RHl + WUW(St+1) | St :8] . Dynamic programming:
Approximate because v_ not known

TD(0): Approximate because of E and v_ not known

TD(0) Algorithm

Tabular TD(0) for estimating v,

Input: the policy m to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A < action given by 7 for S

Take action A, observe R, S’

V(S) <+ V(S)+a|R+~V(S) —V(9)]
S+ 5

until S 1s terminal

Question: What information does this algorithm use?

1D for Control

* We can plug ID prediction into the generalized policy iteration framework

 Monte Carlo control loop:
1. Generate an episode using estimated &

2. Update estimates of) and

 On-policy TD control loop:

1. Take an action according to &

2. Update estimates of Q and 7

On-Policy TD Control

Sarsa (on-policy TD control) for estimating () = q¢.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize (s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from () (e.g., e-greedy)

Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S using policy derived from @) (e.g., e-greedy)
Q(S, 4) « Q(S. 4) + a[R+1Q(S', A') - Q(S, A)]
S+ S A+ A

until S 1s terminal

Question: \What information does this algorithm use?

Question: Will this estimate the Q-values of the optimal policy?

Actual Q-Values vs.
Optimal Q-Values

e Just as with on-policy Monte Carlo control, Sarsa does not converge to the
optimal policy, because it always chooses an e-greedy action

* And the estimated Q-values are with respect to the actual actions, which
are €-greedy

e Question: Why is it necessary to choose e-greedy actions?

 \What if we acted e€-greedy, but learned the Q-values for the optimal policy?

Off-Policy TD Control

Q-learning (off-policy TD control) for estimating 7 ~ T,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode: I
Choose A from S using policy derived from @ (e.g., e-greedy)

Take action A, observe R, S’
Q(S,A) + Q(S,A) + a| R + ymax, Q(S',a) — Q(S, A)]
S« 5’ e © o

until S i1s terminal

Question: What information does this algorithm use”?

Question: \Why aren't we estimating the policy 7 explicitly?

Example The CIift

(undiscounted)
R =-1

Safer path

Optimal path

S The Cliff G

Agent gets -1 reward until they reach the goal state

Step into the Cliff region, get reward -100 and go back to start
Question: How will Q-Learning estimate the value of state”?

Question: How will Sarsa estimate the value of state?

Performance on The Cliff

Sarsa
D5 -
Sum of _50 -
rewards Q-learning
during
episode s
-100 I I | | I
0 100 200 300 400 500
Episodes

Q-Learning estimates optimal policy, but Sarsa consistently
outperforms Q-Learning. (why?)

Sarsa Uses Sampled Actions

» Sarsa updates the value of Q(3,, A,) based on the estimated value of the
next action that will actually be taken in the next state:

0(S,A) « OS,A) +a R, + - 0(S,A)]

e BUT estimate of v_($,, 1) = E, [Q(St+l’At+1)]

» We know the distribution of A, ; (what is it?)

 [he estimated value of that action doesn't depend on what happens
after it is taken (why?)

« Why not estimate [[Q(St 1A, +1)] by taking expectation over A, ;7

EXpected Sarsa

Sarsa uses a single sample from z(- | S,) to estimate v (S, 1):

Q(S,A) < OS,A) +a [R,; + — 0(S, A

Expected Sarsa takes over every possible action:

0(S.4) = O(S,4) + & Ry + Eoris.) [0)] - 0(S. 4)

= 0(S, A) +a |Ry+7), [ma] S0, 2)] — QS A)
€A (S141)

EXpected Sarsa

Expected Sarsa (on-policy TD control) for estimating © ~ w,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize (s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @) (e.g., e-greedy)

Take action A, observe R, S’ I
Q(S,A) « Q(S5,A4) + a|R + (a | SHO(S',a)) — O(S, A)
S g a[R+7 (T, ") | A

until S 1s terminal ® o o

INnformation Usage

» Sarsa uses the actual reward R, of the actual action A, taken from an I
actual state S,, and the estimated value of the actual action A, | to be i)
taken in the actual next state S, o

» Q-Learning uses the actual reward R, of the actual action A, taken I
from an actual state §,, and the value of the highest-estimated-value /8\
action in the actual next state S, d o'

 Expected Sarsa uses the actual reward R, of the actual action A, I
taken from an actual state ,, and the expected estimated value of /(f\
next action A, | to be taken in the actual next state S, %

Performance on The CIiff, revisited

0
'QF‘% ;)\./Q é %,(, a3 ;,<' > > > > % > > > > fx > K
. Expected Sarsa
40 - Asymptotic Performance P _
X @
H—e—=—=—————0 =1
Sum of rewards | Q-learning - |
per episode g !
VAR o..g-oeeae g .
-80 |- X' Vv —..gE i
PR 2 o K
x ¥V ogoH
i . . D |
x- @’ .
v - Interim Performance
120 F .
d

X

28 i
m

01 02 03 04 05 06 07 08 09 1
@

 For small enough a, Sarsa and Expected Sarsa have same asymptotic performance

o For larger a, Expected Sarsa has increasingly high interim performance, whereas Sarsa has
increasingly poor interim performance (why?)

Summary

Temporal Difference Learning bootstraps and learns from experience

 Dynamic programming bootstraps, but doesn't learn from experience
(requires full dynamics)

 Monte Carlo learns from experience, but doesn't bootstrap
Prediction: TD(0) algorithm
Sarsa estimates action-values of actual e-greedy policy

 Expected Sarsa estimates action-values of €-greedy policy

Q-Learning estimates action-values of optimal policy while executing an
e-greedy policy

