Monte Carlo
Prediction & Control

CMPUT 261: Introduction to Artificial Intelligence

L e A

| ecture Outline

Recap & Logistics

Monte Carlo Prediction

Estimating Action Values

Monte Carlo Control

Importance Sampling

Off-

Policy Monte Carlo Control

After this lecture, you should be able to:

explain how Monte Carlo estimation for state values works

trace an execution of first-visit Monte Carlo

explain the difference between prediction anc

define on-policy vs. off-policy learning
define a behaviour policy

define exploring starts

explain what problem exploring starts solve
define an epsilon-soft policy

D)

rediction

control

explain what problem epsilon-soft policies solve

| ogistics

* [ate submissions for Assignment #3 accepted until Friday at 11:59pm

 Assignment #4 was released today!

e Due April 11 at 11:59pm

Previous Lecture Summary

An optimal policy has higher state value than any other policy at every state

A policy's state-value function can be computed by iterating an expected
update based on the Bellman equation

Given any policy &, we can compute a greedy improvement ’ by choosing
highest expected value action based on v,

Policy iteration: Repeat:
Greedy improvement using v_, then recompute v,

Value iteration: Repeat:
Recompute v_ by assuming greedy improvement at every update

Recap: In-Place lterative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
Vi(s) < >, m(als)) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, v — V(s)|)
until A < 6

* These are expected updates: Based on a weighted average (expectation)
of all possible next states

Recap: Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) 2 v (s) VseJ.

f you are never worse off at any state by following 7z’ for one step and then

following 7 forever after, then following 7’ forever has a higher expected value
at every state.

Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € S: his is a lot of iterations!

v V(s) Is it necessary to run to
V(s) <>, .08 rls,m(s)) |r + V()] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Value [teration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

= max)" p(s',r|s,@)[r + ()
s',r

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € &:
v+ V(s)
V(s) < max,), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + VV(S/)}

Example: Blackjack

Player gets two cards, dealer gets 1

Player can hit (get a new card) as many times as they like, or stick
(stop hitting)

After the player is done, the dealer hits / sticks according to a fixed rule
Whoever has the most points (sum of card values) wins

But, if you have more than 21 points, you lose immediately ("bust”)

Simulating Blackjack

* Given a policy for the player, it Is very easy to simulate a game of Blackjack

e (Treat both the cards and the dealer as part of the environment)
* Question: Is it easy to compute the full dynamics?

* Question: Is it easy to run iterative policy evaluation?

EXperience vs. expectation

* |n order to compute expected updates, we need to know the exact
probability of every possible transition

e Often we don't have access to the full probability distribution, but we do
have access to samples of experience

1. Actual experience: \We want to learn based on interactions with a real
environment, without knowing its dynamics

2. Simulated experience: \We can simulate the dynamics, but we don't

have an explicit representation of transition probabllities, or there are
too many states

Monte Carlo Estimation

* [nstead of estimating expectations by a weighted sum over

all possibilities, estimate expectation by averaging over a sample drawn
from the distribution:

n

1
- X] = ;f(x)x ~ ;in where X; ~f

=1

Monte Carlo Prediction

Use a large sample of episodes generated by a policy i to estimate the
state-values v_(ss) for each state s

* We will consider only episodic tasks for now

Question: What is the return G, for state S, = s in a given episode?

We can estimate the expected return v_(s) = E[G, | S, = s] by averaging
the returns for that state in every episode containing a visit to §

First-visit Monte Carlo Prediction

First-visit MC prediction, for estimating V = v,

Input: a policy 7 to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € S
Returns(s) < an empty list, for all s € S

Loop forever (for each episode):
(Generate an episode following w: So, Ao, R1,S51, A1, Ro, ..., S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =1—1,T—2,...,0:
G+ VvG + Ry
Unless S; appears in So, S1,...,5¢_1:
Append G to Returns(St)
V (St) < average(Returns(St))

Monte Carlo vs.

Dynami

C Programming

Ilterative policy evaluation uses the estimates of the
next state's value to update the value of this state

e Only needs to

compute a single transition to update

a state's estimate

Monte Carlo esti

mate of each state's value Is

iIndependent fror

N estimates of other states' values

 Needs the entire episode to compute an update

e (Can focus on

evaluating a subset of states if desired

o—)—eo+—)

Control vs. Prediction

* Prediction: estimate the value of states and/or actions given some

fixed policy

 Control: estimate an optimal policy

—stimating Action Values

« When we know the dynamics p(s’,r | s, a), an estimate of state values is
sufficient to determine a good policy:

 (Choose the action that gives the best combination of reward and

a* = arg max Zp(s’, r|s,a)lr+ |
acd o

 Thisis why Value lteration only explicitly estimates state values, not policy
e |f we don't know the dynamics, state values are not enough

* Jo estimate a good policy, we need an explicit estimate of action values

Exploring Starts for Action-Value
—Stimation

 We can just run first-visit Monte Carlo and approximate the returns to each
state-action pair

* Question: \What do we do about state-action pairs that are never visited?

e |f the current policy & never selects an action a from a state s, then
Monte Carlo can't estimate its value

 EXxploring starts assumption:

» Every episode starts at a random state-action pair S, Ay

 Every pair has a positive probability of being selected for a start

Monte Carlo Control

Monte Carlo control can be used for policy iteration:

evaluation

T o,

T~ greedy(Q)

improvement

E I E I E I B
Mo —> Qng —> M1 —> @, —> Mg —> ==+ —> Ty —> (s

Monte Carlo Control with Exploring Starts

Monte Carlo ES (Exploring Starts), for estimating 7 ~ =,

Initialize:
m(s) € A(s) (arbitrarily), for all s € S
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € 3, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ay € A(Sy) randomly such that all pairs have probability > 0
Generate an episode from Sy, Ag, following w: So, Ao, R1,...,57_-1, Ar_1, R
G+ 0
Loop for each step of episode, t =1—1,T—2,...,0:
G +—vG + Ry
Unless the pair S;, A; appears in Sy, Ag, S1, A1 ...,5:-1, Ai_1:
Append G to Returns(S;, A;)
Q(S;, Ay) < average(Returns(Sy, Ay))
7(S;) + argmax,_, Q(S;, a)

Question: \What unlikely assumptions does this rely upon?

e-Soft Policies

The exploring starts assumption requires that we see every state-action pair
with positive probability

e Even if £ never chooses a from state s

Another approach: SImply force i to (sometimes) choose a!

An e-soft policy is one for which 7(a | s) > Vs, a

| A (s)|

Example: ¢-greedy policy

€

| A(s)]

(1 —e)+ ‘ dis)‘ otherwise.

if a & arg max , Q(s, a),
n(als) =

Monte Carlo Control w/out Exploring Starts

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ T,

Algorithm parameter: small € > 0

Initialize:
T <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: So, Ag, R1,...,57_1,Ar_1, R
G <+ 0
Loop for each step of episode, t =T—-1,T—-2,...,0:
GG+ Riyq
Unless the pair S;, A; appears in So, Ag, S1,A41...,5:-1, Ai_1:
Append G to Returns(St, As)
Q(S;, Ay) + average(Returns(Ss, Ay))
A* < argmax, Q(S;, a) (with ties broken arbitrarily)
For all a € A(S}):
(1—cec+¢e/|A(Sy)| ifa= A

malS) < eg1a8)| if o # A

Monte Carlo Control w/out Exploring Starts

On-policy first-visit MC control (for e-soft policies), estimates 7 ~ T,

Algorithm parameter: small € > 0

Initialize:
m <— an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) < empty list, for all s € §, a € A(s)

Repeat forever (for each episode): Question:
Generate an episode following m: Sg, Ag, R1,...,57_1,Ar_1, R
G0 | Will this procedure
Loop tor each step of episode, t =T1T—1,1T—2,...,0: converge to the
G vG + Ri1q _ ,
Unless the pair S;, A; appears in Sy, Ag, S1, A1 ..., 51, Av_1: optimal policy 77
Append G to Returns(St, Az)
Q(S;, Ay) < average(Returns(St, A¢)) Why or why not?
A* < argmax, Q(St, a) (with ties broken arbitrarily)

For all a € A(S;):
[1—ce+¢/|A(Sy)| if a= A*

malSe) <\ 1Ay if a # A"

Importance Sampling

* Monte Carlo sampling: use samples from the target distribution to
estimate expectations

 Importance sampling: Use samples from proposal distribution to
estimate expectations of target distribution by reweighting samples

x1= Y for= 3 ED e = Y sl i n — Y x,-
: . 7 &)

g(x) g(x)
I

Importance sampling
ratio

X

Off-Policy Prediction via
Importance Sampling

Definition:
Off-policy learning means using data generated by a behaviour policy to
learn about a distinct target policy. Proposal .~

™~ Target distribution
distribution

Off-Policy Monte Carlo Prediction

» Generate episodes using behaviour policy b

 [ake weighted average of returns to state s over all the episodes containing
a visit to s to estimate v_(s)

* Weighed by importance sampling ratio of trajectory starting from
S, = s until the end of the episode:

PrlAe Segrr 2 3713 Appoy ~ 71
Pr[At, St+19 "‘?STlSt9At:T—1 ~ b]

Importance Sampling Ratios for Trajectories

» Probability of a trajectory A,, S, 1, A, 1, ..., Oy from §;:
PrA, S, (.., Syl Sy A ~ 7] =
(A SIS 1 185 ADA(A 1 [S141)- - - P71 57— 15 AT_y)

» Importance sampling ratio for a trajectory A,, S, 1, A, 15 ..., Sy from ;.

Ordinary vs.Weighteo
Importance Sampling

* Ordinary importance sampling:

1 n
V(s) = o Z Pi(s,iy:1()—100i
i=1

 Weighted importance sampling:

n
)3 1 Prs.iy 1) —100 1
n

V(s) =
)3 i1 Pt(s,i):T(i)—1

Example: Ordinary vs. Weighted
Importance Sampling for Blackjack

5¢

Mean
square

error

(average over [
100 runs)

" Weighted importahce sampling
0 10 100 1000 10,000
Episodes (log scale)

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a
single blackjack state from off-policy episodes. |

(Image: Sutton & Barto, 2018)

Off-Policy Monte Carlo Prediction

Off-policy MC prediction (policy evaluation) for estimating () ~ ¢,

Input: an arbitrary target policy

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) + 0

Loop forever (for each episode):

b < any policy with coverage of m

Generate an episode following b: Sg, Ao, R1,...,57_1,Ar_1, R

G+ 0

W 1

Loop for each step of episode, t =1—1,17—2,...,0, while W # 0:
G vG + Riyq
C(S;, Ay) < C(Ss, Ay) + W
Q(St, Ar) < Q(S, Ay) C(S‘ZAt) G — Q(S5t, Ay))

m(A¢|St)
W= W

Off-Policy Monte Carlo Control

Off-policy MC control, for estimating m ~ .,

Initialize, for all s € §, a € A(s):
Q(s,a) € R (arbitrarily)
C(s,a) < 0
m(s) + argmax, QQ(s,a) (with ties broken consistently)

Loop forever (for each episode):
b <+ any soft policy
(Generate an episode using b: So, Ag, R1,...,57_1,Ar_1, Rt
G <+ 0
W 1
Loop for each step of episode, t =T—-1,T—-2,...,0:
G vG + Riaq
C(St, At) — C(St, At) + W

Q(St, At) Q(St, At) C(SVZAt) G — Q(St, At)]

7w (S;) < argmax, Q(S;,a) (with ties broken consistently)
If A; # w(S;) then exit inner Loop (proceed to next episode)

1
W Wrams

Off-Policy Monte Carlo Control

Off-policy MC control, for estimating m ~ 7,

Initialize, for all s € 8, a € A(s): Y WG, Y WG
Q(s,a) € R (arbitrarily) ’:nl el Questions:
C(s,a) + 0 Zi=1Wi C—-W

m(s) < argmax, Q(s,a) (w

1. WIll this procedure
converge to the

optimal policy 7*?

n+1
i:I VVlGl B (C — W)Qn + WG
C

Loop forever (for each episode):
b < any soft policy

Generate an episode using b: W
G 0 G=0,+—=[G-0l|| 2. Why do we break
W<« 1
7
Loop for each step of episode, t =T —1,T—2,...,0: when At ;é ﬂ(St) '
G+ ")/G Rt_|_1
C(Sp, Ar) « C(S;, A) + W 3. Why dothe
Q(Si, Ar) |Q(-7 [G — Q(St, Ay)] weights W not
mw(S) < argmax, (J(.5;, a with ties broken consistently) involve 7(At ‘ St)?

If A; # w(S;) then exit inner Loop (proceed to next episode)

1
W Wras

Summary

Monte Carlo estimation estimates values by averaging returns over sample episodes
* Does not require access to full model of dynamics

 Does require access to an entire episode for each sample

—stimating action values requires either exploring starts or a soft policy (e.g., €-greedy)

Off-policy learning is the estimation of value functions for a target policy based on
episodes generated by a different behaviour policy

 Importance sampling is one way to perform off-policy learning

 Weighted importance sampling has lower variance than ordinary importance
sampling

Off-policy control is [earning the optimal policy (target policy) using episodes from a
behaviour policy

