Monte Carlo Prediction & Control

CMPUT 261: Introduction to Artificial Intelligence

S&B §5.0-5.5, 5.7

Lecture Outline

- 1. Recap & Logistics
- 2. Monte Carlo Prediction
- 3. Estimating Action Values
- 4. Monte Carlo Control
- 5. Importance Sampling
- 6. Off-Policy Monte Carlo Control

After this lecture, you should be able to:

- explain how Monte Carlo estimation for state values works
- trace an execution of first-visit Monte Carlo Prediction
- explain the difference between prediction and control
- define on-policy vs. off-policy learning
- define a behaviour policy
- define exploring starts
- explain what problem exploring starts solve
- define an epsilon-soft policy
- explain what problem epsilon-soft policies solve

Logistics

- Late submissions for **Assignment #3** accepted until Friday at 11:59pm
- Assignment #4 was released today!
 - Due April 11 at 11:59pm

Previous Lecture Summary

- An optimal policy has higher state value than any other policy at every state
- A policy's state-value function can be computed by iterating an expected update based on the Bellman equation
- Given any policy π , we can compute a greedy improvement π' by choosing highest expected value action based on v_π
- Policy iteration: Repeat: Greedy improvement using v_{π} , then recompute v_{π}
- Value iteration: Repeat: Recompute v_{π} by assuming greedy improvement at every update

Recap: In-Place Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0

Loop:
\Delta \leftarrow 0
Loop for each s \in \mathbb{S}:
v \leftarrow V(s)
V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]
\Delta \leftarrow \max(\Delta,|v-V(s)|)
until \Delta < \theta
```

• These are **expected updates:** Based on a weighted average (expectation) of **all possible next states**

Recap: Policy Improvement Theorem

Theorem:

Let π and π' be any pair of deterministic policies.

If
$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$$
,

then
$$v_{\pi'}(s) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$$
.

If you are never worse off **at any state** by following π' for **one step** and then following π forever after, then following π' forever has a higher expected value **at every state**.

Policy Iteration

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

This is a lot of iterations! Is it necessary to run to completion?

Value Iteration

Value iteration interleaves the estimation and improvement steps:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_k(S_{t+1}) \, | \, S_t = s, A_t = a \right]$$
$$= \max_{a} \sum_{s',r} p(s',r \, | \, s,a) \left[r + \gamma v_k(s') \right]$$

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$| \Delta \leftarrow 0$$

$$| \text{Loop for each } s \in \mathbb{S}:$$

$$| v \leftarrow V(s)$$

$$| V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$| \Delta \leftarrow \max(\Delta,|v - V(s)|)$$

$$| \text{until } \Delta < \theta$$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Example: Blackjack

- Player gets two cards, dealer gets 1
- Player can hit (get a new card) as many times as they like, or stick (stop hitting)
- After the player is done, the dealer hits / sticks according to a fixed rule
- Whoever has the most points (sum of card values) wins
- But, if you have more than 21 points, you lose immediately ("bust")

Simulating Blackjack

- Given a policy for the player, it is very easy to simulate a game of Blackjack
 - (Treat both the cards and the dealer as part of the environment)
- Question: Is it easy to compute the full dynamics?
- Question: Is it easy to run iterative policy evaluation?

Experience vs. Expectation

- In order to compute expected updates, we need to know the exact probability of every possible transition
- Often we don't have access to the full probability distribution, but we do have access to samples of experience
 - 1. **Actual experience:** We want to learn based on interactions with a **real environment**, without knowing its dynamics
 - 2. **Simulated experience:** We can **simulate** the dynamics, but we don't have an **explicit representation** of transition probabilities, or there are **too many states**

Monte Carlo Estimation

 Instead of estimating expectations by a weighted sum over all possibilities, estimate expectation by averaging over a sample drawn from the distribution:

$$\mathbb{E}[X] = \sum_{x} f(x)x \approx \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{where } x_i \sim f$$

Monte Carlo Prediction

- Use a large sample of episodes generated by a policy π to estimate the state-values $v_{\pi}(s)$ for each state s
 - We will consider only episodic tasks for now
- Question: What is the return G_t for state $S_t = s$ in a given episode?
- We can estimate the expected return $v_\pi(s)=\mathbb{E}[G_t\mid S_t=s]$ by averaging the returns for that state in every episode containing a visit to s

First-visit Monte Carlo Prediction

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in S
    Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
             Append G to Returns(S_t)
              V(S_t) \leftarrow \text{average}(Returns(S_t))
```

Monte Carlo vs. Dynamic Programming

• Iterative policy evaluation uses the estimates of the next state's value to update the value of this state

- Monte Carlo estimate of each state's value is independent from estimates of other states' values
 - Needs the entire episode to compute an update
 - Can focus on evaluating a subset of states if desired

Control vs. Prediction

- **Prediction:** estimate the value of states and/or actions given some fixed policy π
- Control: estimate an optimal policy

Estimating Action Values

- When we know the **dynamics** $p(s', r \mid s, a)$, an estimate of **state values** is sufficient to determine a good **policy**:
 - Choose the action that gives the best combination of reward and next-state value:

$$\hat{a}^* = \arg\max_{a \in \mathcal{A}} \sum_{s',r} p(s',r \mid s,a) [r + \gamma \hat{v}(s')]$$

- This is why Value Iteration only explicitly estimates state values, not policy
- If we don't know the dynamics, state values are not enough
 - To estimate a good policy, we need an explicit estimate of action values

Exploring Starts for Action-Value Estimation

- We can just run first-visit Monte Carlo and approximate the returns to each state-action pair
- Question: What do we do about state-action pairs that are never visited?
 - If the current policy π never selects an action a from a state s, then Monte Carlo can't estimate its value
- Exploring starts assumption:
 - Every episode starts at a random state-action pair S_0, A_0
 - Every pair has a positive probability of being selected for a start

Monte Carlo Control

Monte Carlo control can be used for policy iteration:

$$\pi_0 \xrightarrow{\mathrm{E}} q_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} q_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} q_*$$

Monte Carlo Control with Exploring Starts

```
Monte Carlo ES (Exploring Starts), for estimating \pi \approx \pi_*
Initialize:
    \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in A(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a)
```

Question: What unlikely assumptions does this rely upon?

ε-Soft Policies

- The exploring starts assumption requires that we see every state-action pair with positive probability
 - Even if π never chooses a from state s
- Another approach: Simply force π to (sometimes) choose a!
- . An ϵ -soft policy is one for which $\pi(a \mid s) \geq \frac{\epsilon}{\mid \mathscr{A}(s) \mid} \quad \forall s, a$
- Example: *ϵ*-greedy policy

$$\pi(a \mid s) = \begin{cases} \frac{\epsilon}{|\mathscr{A}(s)|} & \text{if } a \notin \arg\max_{a} Q(s, a), \\ (1 - \epsilon) + \frac{\epsilon}{|\mathscr{A}(s)|} & \text{otherwise.} \end{cases}$$

Monte Carlo Control w/out Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

```
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in S, a \in A(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)
                                                                                      (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

Monte Carlo Control w/out Exploring Starts

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$

```
Algorithm parameter: small \varepsilon > 0
Initialize:
    \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
    Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in A(s)
    Returns(s, a) \leftarrow \text{empty list, for all } s \in S, \ a \in A(s)
Repeat forever (for each episode):
    Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
         Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, \ldots, S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
                                                                                     (with ties broken arbitrarily)
              A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)
              For all a \in \mathcal{A}(S_t):
                      \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```

Question:

Will this procedure converge to the optimal policy π^* ?

Why or why not?

Importance Sampling

- Monte Carlo sampling: use samples from the target distribution to estimate expectations
- Importance sampling: Use samples from proposal distribution to estimate expectations of target distribution by reweighting samples

$$\mathbb{E}[X] = \sum_{x} f(x)x = \sum_{x} \frac{g(x)}{g(x)} f(x)x = \sum_{x} g(x) \frac{f(x)}{g(x)} x \approx \frac{1}{n} \sum_{\substack{x_i \sim g}} \frac{f(x_i)}{g(x_i)} x_i$$
Importance sampling ratio

Off-Policy Prediction via Importance Sampling

Definition:

Off-policy learning means using data generated by a behaviour policy to learn about a distinct target policy.

Proposal distribution

Target distribution

Off-Policy Monte Carlo Prediction

- Generate episodes using behaviour policy b
- Take weighted average of returns to state s over all the episodes containing a visit to s to estimate $v_{\pi}(s)$
 - Weighed by importance sampling ratio of trajectory starting from $S_t = s$ until the end of the episode:

$$\rho_{t:T-1} \doteq \frac{\Pr[A_t, S_{t+1}, ..., S_T | S_t, A_{t:T-1} \sim \pi]}{\Pr[A_t, S_{t+1}, ..., S_T | S_t, A_{t:T-1} \sim b]}$$

Importance Sampling Ratios for Trajectories

• Probability of a trajectory $A_t, S_{t+1}, A_{t+1}, ..., S_T$ from S_t : $\Pr[A_t, S_{t+1}, ..., S_T | S_t, A_{t:T-1} \sim \pi] =$

$$\pi(A_t | S_t)p(S_{t+1} | S_t, A_t)\pi(A_{t+1} | S_{t+1})...p(S_T | S_{T-1}, A_{T-1})$$

• Importance sampling ratio for a trajectory $A_t, S_{t+1}, A_{t+1}, \ldots, S_T$ from S_t :

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k | S_k) p(S_{k+1} | S_k, A_k)} = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k)}{\prod_{k=t}^{T-1} b(A_k | S_k)}$$

Ordinary vs. Weighted Importance Sampling

Ordinary importance sampling:

$$V(s) \doteq \frac{1}{n} \sum_{i=1}^{n} \rho_{t(s,i):T(i)-1} G_{i,t}$$

Weighted importance sampling:

$$V(s) \doteq \frac{\sum_{i=1}^{n} \rho_{t(s,i):T(i)-1} G_{i,t}}{\sum_{i=1}^{n} \rho_{t(s,i):T(i)-1}}$$

Example: Ordinary vs. Weighted Importance Sampling for Blackjack

Figure 5.3: Weighted importance sampling produces lower error estimates of the value of a single blackjack state from off-policy episodes. ■

Off-Policy Monte Carlo Prediction

Off-policy MC prediction (policy evaluation) for estimating $Q \approx q_{\pi}$

```
Input: an arbitrary target policy \pi
Initialize, for all s \in S, a \in A(s):
     Q(s, a) \in \mathbb{R} (arbitrarily)
     C(s,a) \leftarrow 0
Loop forever (for each episode):
     b \leftarrow \text{any policy with coverage of } \pi
     Generate an episode following b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0, while W \neq 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t|S_t)}{h(A_t|S_t)}
```

Off-Policy Monte Carlo Control

Off-policy MC control, for estimating $\pi \approx \pi_*$

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
     Q(s, a) \in \mathbb{R} (arbitrarily)
     C(s,a) \leftarrow 0
     \pi(s) \leftarrow \operatorname{argmax}_a Q(s, a) (with ties broken consistently)
Loop forever (for each episode):
     b \leftarrow \text{any soft policy}
     Generate an episode using b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
           \pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a) (with ties broken consistently)
          If A_t \neq \pi(S_t) then exit inner Loop (proceed to next episode)
          W \leftarrow W \frac{1}{b(A_t|S_t)}
```

Off-Policy Monte Carlo Control

Off-policy MC control, for estimating $\pi \approx \pi_*$

```
Initialize, for all s \in \mathbb{S}, a \in \mathcal{A}(s):
Q(s,a) \in \mathbb{R} \text{ (arbitrarily)}
C(s,a) \leftarrow 0
\pi(s) \leftarrow \arg\max_{a} Q(s,a) \text{ (w}
Loop forever (for each episode):
b \leftarrow \text{ any soft policy}
Generate an episode using b:
G \leftarrow 0
W \leftarrow 1
Loop for each step of episode, t = T-1, T-2, \ldots, 0:
C \leftarrow \alpha(C+R)
```

```
G \leftarrow \gamma G + R_{t+1}
C(S_t, A_t) \leftarrow C(S_t, A_t) + W
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
\pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a) \quad \text{(with ties broken consistently)}
If A_t \neq \pi(S_t) then exit inner Loop (proceed to next episode)
W \leftarrow W \frac{1}{b(A_t|S_t)}
```

Questions:

- 1. Will this procedure converge to the optimal policy π^* ?
- 2. Why do we break when $A_t \neq \pi(S_t)$?
- 3. Why do the weights W not involve $\pi(A_t \mid S_t)$?

Summary

- Monte Carlo estimation estimates values by averaging returns over sample episodes
 - Does not require access to full model of dynamics
 - Does require access to an entire episode for each sample
- Estimating action values requires either exploring starts or a soft policy (e.g., ϵ -greedy)
- Off-policy learning is the estimation of value functions for a target policy based on episodes generated by a different behaviour policy
 - Importance sampling is one way to perform off-policy learning
 - Weighted importance sampling has lower variance than ordinary importance sampling
- Off-policy control is learning the optimal policy (target policy) using episodes from a behaviour policy