Optimality and
Dynamic Programming

CMPUT 261: Introduction to Artificial Intelligence

| ecture Outline

1. Recap & Logistics
Policy Evaluation

Optimality

> W

Policy Improvement

After this lecture, you should be able to:

e justify why one policy Is weakly better than another

* trace an execution of iterative policy evaluation

e state the Policy Improvement Theorem and describe why it Is important
* trace an execution of the Value lteration algorithm

| ogistics

 Assignment #3 is due tomorrow at 11:59pm
e |ate submissions accepted until Friday at 11:59pm

 Assignment #4 will be released Thursday

 Due Thursday April 11 at 11:59pm

 Reminder: TAs are available during labs to help

Recap: Markov Decision Process

At each timet = 1,2,3,...

reward

R,
i Rt+1
- :
. S.. | Environment

This interaction between agent
and environment produces a trajectory:

S0, A, R, 91, A1, Ry, 89, A5, Rs, ...

1. Agent receives input denoting
current state S,

2. Agent chooses action A,

3. Next time step, agent receives
reward R, | and new state S, |,
chosen according to a
distribution p(s’,r | s, a)

Recap: Policies & Value Functions

Policy: A function 7 : & — A(&) that maps states to a distribution over actions

For every state s, agent following policy & will play action a with probability z(a | s)

State-value function:

Vﬂ'(s) = _]Z[Gflsf = 5]

o0
— k —
7 Z V'R |9 =S
k=0

Action-value function:

QJZ'(SQ Cl) = _][[Gt‘St — SaAl‘ — Cl]

o0
— K — —
7 Z V' Rijie1 |5 =84, =a
k=0

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:
V?Z'(S) = _][[Gt‘St = 5]
AR 7G| S, = 5]

Z n(als) Z Zp(s’, r|s,a) [r + YE 1G] S, = S’]]

= Z m(a|s) ZP(S’» rls, @) |1+ yvy(s)

 V_Iis the unique solution to 's (state-value) Bellman equation

 [here is also a Bellman equation for &'s action-value function

Example: GridWorld

At each cell, can go north, south,
east, west

Iry to go off the edge: reward of -1

Leaving state A: takes you to state A,
reward of +10

Leaving state B: takes you to state B,
reward of +5

A B
+5
HO| [B'
Al

(Image: Sutton & Barto, 2018)

GridWorld

3.3

8.8

4.4

5.3

1.5

+0

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

AI

-1.0

0.4

0.4

-0.6

-1.2

Reward dynamics

-1.9

-1.3

-1.2

1.4

-2.0

n(als) =0.25

State-value function v, for random policy

(Image: Sutton & Barto, 2018)

GridWorld with Bounds Checking

What about a policy where we never try to go over an edge”?

A B 3.3(8.8/4.4/5.3|1.5 6.7 [10.8) 6.4 | 6.7 | 4.3
+5 1.5[3.0/ 2.3/ 1.9/ 0.5 4.24.7|3.7|3.4|2.8

H0| | B 0.1 0.7/ 0.7/ 0.4|-0.4 241241211917
-1.0-0.4/-0.4/-0.6/-1.2 1.5(1.4(1.3|1.2|1.1

A' -1.9/-1.3/-1.2/-1.4/-2.0 1.1(1.0/0.9/0.9|0.9

State-value function v_for

Reward dynamics random policy h q '
w(a | s) =025 ounded random policy 7

State-value function v_z for
B

Policy Evaluation

Question: How can we compute v_?

1. We know that v_ is the unique solution to the Bellman equations, so we
could just solve them (treating v (s}), ..., V(S| s|) as variables)

e put that Is tedious and annoying and slow
(it's a system of | &’ | linear equations in | & | unknowns)

* Also requires a complete model of the dynamics

2. Iterative policy evaluation

* Jakes advantage of the recursive formulation

terative Policy Evaluation

e |terative policy evaluation uses the Bellman equation as an update rule;
Vie1(8) = E IR + yvi(Sii D [S, = 5]
Y alals) Y p(s',rls,a)[r+yvs)]
a s’ r

» V_is a fixed point of this update, by definition

» Furthermore, starting from an arbitrary v, the sequence {v, } wil
convergetov_as k — oo

* (nontrivial to prove)

IN-Place [terative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
Vi(s) < >, m(als)) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, v — V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

 These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)

terative Policy Evaluation

+0

AI

Reward dynamics

0.0 (00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0
Vatk =0

terative Policy Evaluation

V(si 1) = a(m)[=1+yV(s; DI+ z(W)[=1 +yV(s; D]+
7(s)[0 + yV(s;)] + 7(e)[0 + yV(s,)]
= 0.25(=1) + 0.25(—1) + 0.25(0) + 0.25(0)

A -0.5| 0.0 | 0.0 | 0.0 | 0.0

00 | 00| 0.O | 0.0 | 0.0

+0 0.0 | 0.0 | 0.0 | 0.0 | 0.0

00 | 0.0 | 0.0 | 0.0 | 0.0

A' 00 | 0.0 | 0.O | 0.0 | 0.0
Reward dynamics Vatk =0

terative Policy Evaluation

V(s 5) = 2(M)[10 + yV(sy5)] + #(W)[10 + yV(s,5)]+
7(s)[10 + yV(s,5)] + 7(e)[10 + yV(s, 5)]
= 0.25[10 4+ 0.9(0)] + 0.25[10 + 0.9(0)]+
0.25[10 4+ 0.9(0)] + 0.25[10 + 0.9(0)]

A -0.5| 10 | 0.0 | 0.0 | 0.0

00 | 00| 0.O | 0.0 | 0.0

+0 0.0 | 0.0 | 0.0 | 0.0 | 0.0

00 | 0.0 | 0.0 | 0.0 | 0.0

Al 00 | 0O | 0.0 | 0.0 | 0.0
Reward dynamics Vatk =0

terative Policy Evaluation

V(s31) = a(m)[—1+yV(s; D] + z(W)[—1 + y V(s)]+
7(s)[0 + yV(s3)] + 7(e)[0 + yV(s,)]
= 0.25[-14+0.9(0)] + 0.25[0 + 0.9(10)]+
0.25[0 + 0.9(0)] + 0.25[0 + 0.9(0)]

A B 05|10 | 2 | 00| 0.0

00| 00| 0.0 | 0.0 | 0.0

+10 0.0 | 0.0 | 0.0 | 0.0 | 0.0
0.0 | 0.0 | 0.0 | 0.0 | 0.0

|
A 0.0 | 0.0 | 0.0 | 0.0 | 0.0

Reward dynamics Vatk =0

terative Policy evaluation
N GridWorlo

B
+a
0| | B'

AI

Reward dynamics

-0.5 | 10 2 5 0.6

03| 21 | 09 | 1.3 | 0.2

-03|1 04| 03| 04 | -0.1

-0.3| 0.0 | 0.0 | 0.1 | -0.2

-0.5|-03|-0.3]|-0.3]| -0.6
Vatk =1

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

14 | 97 | 3.7 | 53 | 1.0

04 | 25 | 18 | 1.7 | 0.4

-0.2 |1 06 | 06 | 0.5 | -0.1

-0.5| 0.0 | 0.0 | 0.0 | -0.5

-10|-06 | -0.5| -0.5]| -1.0
Vatk =2

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

34 | 89 | 45 | 53 | 1.5
16 | 3.0 | 23 | 1.9 | 0.6
01 | 08 | 0.7 | 04 | -04
-10| -04 | -0.3 | -0.6 | -1.2
-19 |13 |-12]|-14]| -2.0

Vatk = 10000

Question: What is an optimal policy?
A policy 7 is (weakly) better than a policy ' if it is better for all s € & :
n>n = v(s)=2v A(s) Vsed

An optimal policy m. Is weakly better than every other policy

* Question: Is an optimal policy guaranteed to exist for a given MDP?

All optimal policies share the same state-value function: (why?)

v:($) = max v (s)

Also the same action-value function:

g:(s,a) = max q,(s, a)

Bellman Optimality Equations

* V. must satisfy the Bellman equation too

e |nfact, it can be written in a special, policy-free way because we know that every state value is
maximized by 7x:

v«(s) = max g, (s, a)
a

=maxE_[G, | S, =5,A, =d]

=maxE_[R+7Gy | 5 =5,A,=al

A

=max E[R | +yv«($,.) | §;, =5,A, =d]

A

= max Zp(s’, r|s,a)lr+ yv«(s)]

s’ r

Bellman Optimality Equations

U
vi(s) = max B[R | + yv«(S, D[S, = 5,A, = d] " /45\
a

S
Max
= max Zp(s’, rls,a)r + yv«(s)] A A

Q*(Sa a) — L

R1 +ymax g«(S,,a’)
A

St — S’At — Cl] (q*) A
S/
r + y max g«(s’, a’)] max/8\ /8\

=) p(s.rls,a)
s’y

Optimal GridWorld

22.0

24.4

22.0

19.4

17.5

B
+§
0| | B’

19.8

22.0

19.8

17.8

16.0

17.8

19.8

17.8

16.0

14.4

AI

16.0

17.8

16.0

14.4

13.0

Gridworld

14.4

16.0

14.4

13.0

11.7

IR

N
T
:
T
T

LILIL L

RN
RRREE

~
x

Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) 2 v (s) VseJ.

f you are never worse off at any state by following 7z’ for one step and then

following 7 forever after, then following 7’ forever has a higher expected value
at every state.

Policy Improvement [heorem Proof
19) < g,5.76))

_n[Rt+1 + VVn(StH) | 5 = 8A; = 7'(s))
= bR + ‘St:S]
_ﬂ’[Rl‘+1 T qn(St+1a ﬂ,(SH-l)) ‘ St — S]

_JT,[RH-I T 77_7:’[Rt+2 T 7V7z(St+2) ‘ SH-l’AH-l —]T,(St+1)] ‘ St — S]
_ﬂ’[Rt+1 Ty _ﬂ’[Rt+2] T 7/2 _n’[vﬂ(St+2)] ‘ St = 5]
AR YR Y | §; = s]

= AR YR+ 7’2Rz+3 Ty | S, = s]

E AR A YR+ VR + VR s+ - | S, = 5]

= v_(S) .

IN

|/\ cooe

Greedy Policy Improvement

Given any policy 7, we can construct a new greedy policy z’ that is guaranteed to be
at least as good.:

7'(s) = argmax g,(s, a)

=argmax E[R, .| +yv, (S IS, =5, A, =da]

A

= arg mslx Z p(s,r|s,a) [r + yvﬂ(s’)] .
s'.r

» If this new policy is not strictly better than the old policy, then v_(s) = v_ () for all
s € & (why?)

* Also means that the new (and old) policies are optimal (why?)

Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € S: his is a lot of iterations!

v V(s) Is it necessary to run to
V(s) <>, .08 rls,m(s)) |r + V()] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Value [teration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

= max)" p(s',r|s,@)[r + ()
s',r

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € &:
v+ V(s)
V(s) < max,), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + VV(S/)}

Summary

An optimal policy has higher state value than any other policy at every state

A policy's state-value function can be computed by iterating an expected
update based on the Bellman equation

Given any policy &, we can compute a greedy improvement ’ by choosing
highest expected value action based on v,

Policy iteration: Repeat:
Greedy improvement using v_, then recompute v,

Value iteration: Repeat:
Recompute v_ by assuming greedy improvement at every update

