
Bayesian Inference

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §10.4, §8.6



Logistics

• Assignment #2 is due today at 11:59pm 

• Midterm is Tuesday, March 5 

• Coverage: Everything up to and including today (Bayesian Inference)


• Usual lecture time & place


• Cheat sheet: One sheet of paper, double-sided okay, hand-written 


• Practice midterm is on eclass



Recap: Linear Models

• Linear regression is a simple model for predicting real quantities


• Can be used for classification too, either based on sign of prediction or 
using logistic regression 

• Gradient descent is a general, widely-used training procedure (with several 
variants)


• Linear models can be optimized in closed form for certain losses


• In practice often optimized with gradient descent 



Recap: Overfitting
• Overfitting is when a learned model fails to generalize due to overconfidence and/or 

learning spurious regularities


• Causes of test error: 

• Bias: Systematic choice of suboptimal hypotheses

• Variance: Different training sets can yield very different hypotheses

• Noise: Unpredictability that is inherent in the process  

(e.g., coin flips cannot be perfectly predicted, even by the "true" model)


• Avoiding overfitting:

1. Pseudocounts: Add imaginary observations

2. Regularization: Penalize model complexity

3. Cross-validation: Reserve validation data to estimate overfitting / test error


- Used to select values for hyperparameters



Lecture Outline
1. Recap & Logistics


2. Learning Model Probabilities


3. Using Model Probabilities


4. Prior Distributions as Bias

After this lecture, you should be able to:

• derive the posterior probability of a model using Bayes' rule

• explain how to use the Beta and Bernoulli distributions for Bayesian learning

• define a conjugate prior and likelihood

• demonstrate model averaging




Learning Point Estimates
• So far, we have considered how to find the best single model (hypothesis), 

e.g.,


• learn a classification function


• optimize the weights of a linear or logistic regression


• The predictions might be a probability distribution, but they are coming out 
of a single model:


  Probability of target Y given observation X


• We have been learning point estimates of our model

P(Y ∣ X)



Learning Model Probabilities

• Instead, we could learn a distribution over models: 
 
 
 

• This is called Bayesian learning: we never discard any model, we only 
weight them differently depending upon their posterior probability


• Question: Why would we want to do that?

•  Probability of target Y and features X given model 𝜃


•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



•  Probability of target Y and features X given model 𝜃


•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)

What is a Model?

• We can do Bayesian learning over finite sets of models:


• e.g., { rank by feature 𝜃 | 𝜃 ∈ {height, weight, age} }


• We can do Bayesian learning over parametric families of models:


• e.g., { regression with weights w0=𝜃1, w1=𝜃2 | 𝜃 ∈ ℝ2 }


• We can mix the two!  


• 𝜃 can encode choice of model family and parameters



What is the Dataset?

• We have an expression for the probability of a single example given a model: 



• Question: What is the expression for the probability of a dataset of observations 
 given a model?


• Assuming that the dataset are independent, identically distributed observations: 



 

Pr(X, Y ∣ θ)

D = {(X1, Y1), …, (Xm, Ym)}

(Xi, Yi) ∼ P(X, Y ∣ θ)

Pr(D |θ) = Pr(X1, Y1 |θ) × … × Pr(Xm, Ym |θ)

=
m

∏
i=1

Pr(Xi, Yi |θ)

•  Probability of target Y and features X given model 𝜃


•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



What is the 

Posterior Model Probability?

Now we can use Bayes' Rule to compute the posterior 
probability of a model 𝜃: 
 
 
 

Pr(θ |D) =
Pr(D |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

Pr(D)

=
∏i Pr(Xi, Yi |θ) Pr(θ)

∑θ′￼
Pr(D |θ′￼) Pr(θ′￼)

Prior probability 
of model 𝜃

Likelihood of data D 
given model 𝜃

•  Probability of target Y and features X given model 𝜃


•      Probability of model 𝜃 given dataset D

Pr(X, Y ∣ θ)

Pr(θ ∣ D)



Example: Biased Coin
• Back to coin flipping!  We can flip a coin and observe heads or tails, but we 

don't know the coin's bias


• Model: Binomial observations 


• Observations: 


• Bias: 


• Likelihood: 


• Question: What should the prior  be?

Y ∈ {h, t}

θ ∈ [0,1]

Pr(H ∣ θ) = θ

Pr(θ)



p(
𝜃)

𝜃

n0=0 n1=0 n0=1 n1=2
n0=2 n1=4 n0=4 n1=8

p(
𝜃)

𝜃

n0=40 n1=80

Biased Coin:

Posterior Probabilities

• Before we see any flips, all biases 
are equally probable  
(according to uniform prior)


• After more and more flips, we 
become more confident in 𝜃


• 𝜃 with highest probability is 2/3


• Expected value of 𝜃 is less! 
(why?)


• But with more observations, 
mode and expected value get 
closer



Beta-Binomial Models
• Likelihood: 


• aka 


• Dataset likelihood: 


• aka 


• Prior: 


• aka 


• Models of this kind are called Beta-Binomial models


• They can be solved analytically: 

P(h ∣ θ) = θ

Bernoulli(h ∣ θ)

θn1 × (1 − θ)n0

Binomial(n1, n0)

P(θ) ∝ 1

Beta(1,1)

Pr(θ ∣ D) = Beta(1 + n1,1 + n0)



Conjugate Priors
• The beta distribution is a conjgate prior for the binomial distribution:


• Updating a beta prior with a binomial likelihood gives a beta posterior:





• Other distributions have this property:


• Gaussian-Gaussian (for means)


• Dirichlet-Multinomial (generalization of Beta-Binomial for multiple values)

Pr(θ ∣ D ∪ {1}) ∝ Pr({1} ∣ θ) Pr(θ ∣ D)
= θ Beta(a, b)(θ)
= Beta(1 + a, b)(θ)



Using Model Probabilities

So we can estimate .  What can we do with it?


1. Parameter estimates


2. Target predictions (model averaging)


3. Target predictions (point estimates)

Pr(θ ∣ D)



1. Parameter Estimates

• Sometimes, we really want to know the parameters of a model itself


• E.g., maybe I don't care about predicting the next coin flip, but I do want to 
know whether the coin is fair


• Can use  to make statements like 


  

Pr(θ ∣ D)

Pr(0.49 ≤ θ ≤ 0.51) > 0.9



2. Model Averaging

• Sometimes we do want to make predictions:


 


• This is called the posterior predictive distribution


• Question: How is this different from just learning a point estimate of a 
model, and then predicting with that model?

Pr(Y |D) = ∑
θ

Pr(Y |θ) Pr(θ |D)



3. Maximum A Posteriori
• Sometimes we do want to make predictions, but...


 


• the posterior predictive distribution may be expensive to compute (or even 
intractable)


• One possible solution is to use the maximum a posterior model as a point estimate:





• Question: Why would you do this instead of just using a point estimate that was 
computed in the usual way?

Pr(Y |D) = ∫
1

0
Pr(Y |θ) Pr(θ |D)dθ

Pr(Y |D) ≃ Pr(Y | ̂θ)  where  ̂θ = arg max
θ

Pr(θ |D)



Prior Distributions as Bias

• Suppose I'm comparing two models,  and  such that





• Question: Which model has higher posterior probability? 


• Priors are a way of encoding bias: they tell use which models to prefer 
when the data doesn't

θ1 θ2

Pr(D ∣ θ1) = Pr(D ∣ θ2)



Priors for Pseudocounts

• We can straightforwardly encode pseudocounts as prior information in 
Beta-Binomial and Dirichlet-Multinomial models


• E.g., for pseudocounts  and ,


 

k1 k0

p(θ) = Beta(1 + k1,1 + k0)



Priors for Regularization

• Some regularizers can be 
encoded as priors also


• L2 regularization is equivalent to 
a Gaussian prior on the weights: 




• L1 regularization is equivalent to 
a Laplacian prior on the weights: 

p(w) = 𝒩(w ∣ m, s)

p(w) = exp( |w | )/2

p(
w
)

w

Gaussian/L2
Laplace/L1



Summary
• Cross-validation is a powerful technique for selecting hyperparameters 

based on data

• In Bayesian Learning, we learn a distribution over models instead of a 

single model

• When the model is conjugate, posterior probabilities can be computed 

analytically

• We can make predictions by model averaging to compute the posterior 

predictive distribution

• The prior can encode bias over models, much the same as regularization


