Bayesian Inference

CMPUT 261: Introduction to Artificial Intelligence



| ogistics

 Assignment #2 is due today at 11:59pm

* Midterm is Tuesday, March 5

* (Coverage: Everything up to and including today (Bayesian Inference)

 Usual lecture time & place

 (Cheat sheet: One sheet of paper, double-sided okay, hand-written

e Practice midterm is on eclass



Recap: Linear Models

* Linear regression is a simple model for predicting real quantities

* (Can be used for classification too, either based on sign of prediction or
using logistic regression

 Gradient descent is a general, widely-used training procedure (with several
variants)

* Linear models can be optimized in closed form for certain losses

* |n practice often optimized with gradient descent



Recap: Overfitting

* Overfitting is when a learned model fails to generalize due to overconfidence and/or
learning spurious regularities

 Causes of test error:
e Bias: Systematic choice of suboptimal hypotheses
* Variance: Different training sets can yield very different hypotheses

 Noise: Unpredictabllity that is inherent in the process
(e.g., coin flips cannot be perfectly predicted, even by the "true" model)

* Avoiding overfitting:
1. Pseudocounts: Add imaginary observations
2. Regularization: Penalize model complexity
3. Cross-validation: Reserve validation data to estimate overfitting / test error

Used to select values for hyperparameters



| ecture Outline

1. Recap & Logistics
2. Learning Model Probabilities

3. Using Model Probabillities

4. Prior Distributions as Bias

After this lecture, you should be able to:
* derive the posterior probability of a model using Bayes' ru

e explain how to use the Beta and

Sernoulll distributions for

e define a conjugate prior and likelihood

 demonstrate model averaging

€

Bayesian learning



| earning Point Estimates

So far, we have considered how to find the best single model (hypothesis),
e.g.,

e |earn a classification function

* optimize the weights of a linear or logistic regression

The predictions might be a probability distribution, but they are coming out
of a single

(Y1 X)

We have been learning point estimates of our model



|_earning Model Probabillities

e |nstead, we could learn a distribution over models:

« Pr(X,Y |0

« Pr(6| D)

* This is called Bayesian learning: we never discard any model, we only
weight them differently depending upon their posterior probability

* Question: Why would we want to do that?



What Is a Model?

. PI‘(X, Y 6’) Probability of target Y and features X given model 6

. PI‘(@ ‘ D) Probability of model 8 given dataset D

* \We can do Bayesian learning over finite sets of models:

e e.9., { rank by feature 8 | 0 € {height, weight, age} }

 We can do Bayesian learning over parametric families of models:

¢ ©.g., { regression with weights wo=01, w1=02 | § € R? }

e \We can mix the two!

e @ can encode choice of model family and parameters



What Is the Dataset”?

« Pr(X,Y |0

« Pr(60 | D)

* We have an expression for the probability of a single example given a model:
Pr(X,Y | 0)

* Question: What is the expression for the probability of a dataset of observations
D=1{X,Y)),....,(X,Y )} given a model?

* Assuming that the dataset are independent, identically distributed observations:

Pr(D|60) =Pr(X,,Y,|0) X ... XPr(X,, Y, |0)

= [ [ Prx. v 10)
=1



What Is the
Posterior Model Probability*?

. Pr(X,Y | 0)
« Pr(0| D)

Now we can use Bayes' Rule to compute the posterior

probabllity of a model 6: Prior probability
— of model 6
Pr(D | 0)[Pr(0)] - ’
pro| D) = ETLLOPIO)
Pr(D)
Hi Pr(X, Y;| 6) Pr(6)
Likelihood of dafa D - Pr(D)

given model 4

Hi Pr(X, Y.| 6) Pr(6)
» o, Pr(D |6 Pr(0)




Example: Biased Coin

 Back to coin flipping! We can flip a coin and observe heads or tails, but we
don't know the coin's bias

e Model: Binomial observations
» Observations: Y € {h,t}

e Bias: 0 € [0,1]

e Likelihood: Pr(H | 6) = 6

» Question: \What should the prior Pr(&) be?



Biased Coin;:
Posterior Probabllities

» Before we see any flips, all biases = NO0=6mMGA0N1RBIN n1=2
are equally probable n0=2 n1=4 — n0=4 n1=8
(according to uniform prior)

e After more and more flips, we ‘
become more confident in 6

o O with highest probability is 2/3

—

D

"

Q.
« Expected value of 0 Is less! J \

(why?)

e But with more observations, ‘ ‘
mode and expected value get

closer




Beta-Binomial Models

Likelihood: P(h | 0) = @
+ aka Bernoulli(Z | 6)
» Dataset likelihood: 8" X (1 — 8)"°

e aka Binomial(n,, )

Crior: P(6) o« 1
¢ aka Beta(l,1])

Models of this kind are called Beta-Binomial models

They can be solved analytically: Pr(€ | D) = Beta(l + ny,1 + n)



Conjugate Priors

* [he beta distribution is a conjgate prior for the binomial distribution:

 Updating a beta prior with a binomial likelihood gives a beta posterior:

Pr(@| DU {l}) xPr({1} | 6)Pr(6| D)
= 0 Beta(a, b)(0)
= Beta(l + a, b)(6)

* Other distributions have this property:

e (Gaussian-Gaussian (for means)

* Dirichlet-Multinomial (generalization of Beta-Binomial for multiple values)



Using Model Probabillities

So we can estimate Pr(@ | D). What can we do with it?
1. Parameter estimates
2. Target predictions (model averaging)

3. Target predictions (point estimates)



1. Parameter Estimates

 Sometimes, we really want to know the parameters of a model itself

 E.g., maybe | don't care about predicting the next coin flip, but | do want to
kKnow whether the coin Is fair

» Can use Pr(@ | D) to make statements like

Pr(0.49 <60 <0.51) > 09



2. Model Averaging

« Sometimes we do want to make predictions:

Pr(Y|D) = Z Pr(Y|6) Pr(0| D)
0

* This is called the posterior predictive distribution

* Question: How is this different from just learning a point estimate of a
model, and then predicting with that model?




3. Maximum A Posterior

Sometimes we do want to make predictions, but...

1
Pr(Y|D) = J Pr(Y|60) Pr(@| D)do
0

the posterior predictive distribution may be expensive to compute (or even
intractable)

One possible solution is to use the maximum a posterior model as a point estimate:

Pr(Y|D) ~ Pr(Y| é’) where 6 = arg max Pr(@| D)
0

Question: \Why would you do this instead of just using a point estimate that was
computed in the usual way?




Prior Distriputions as Blas

» Suppose I'm comparing two models, @; and @, such that
Pr(D | 6,) = Pr(D | 6,)

* Question: \Which model has higher posterior probability?

* Priors are a way of encoding bias: they tell use which models to prefer
when the data doesn't



Priors for Pseugocounts

 We can straig

Beta-Binomia

ntforwardly encode pseudocounts as prior information in

and

Dirichlet-Multinomial models

» E.g., for pseudocounts k; and k,

p(0) = Beta(l + k,1 + k)



Priors for Regularization

- Gaussian/L2
| Laplace/L1
 Some regularizers can be —

encoded as priors also

* L2 regularization is equivalent to
a Gaussian prior on the weights:

pw) = N (w | m,s)

p(w)

* L1 regularization is equivalent to
a Laplacian prior on the weights:

p(w) =exp(|w|)/2




Summary

Cross-validation is a powerful technigue for selecting hyperparameters
based on data

In Bayesian Learning, we learn a distribution over models instead of a
single model

When the model Is conjugate, posterior probabilities can be computed
analytically

We can make predictions by model averaging to compute the posterior
predictive distribution

The prior can encode bias over models, much the same as regularization



