| iInear Models

CMPUT 261: Introduction to Artificial Intelligence



Assignment #2

Assignment #2 is due Thu Feb 29/2024 (two weeks from today) at 11:59pm
e Submissions past the deadline will have late penalty applied
* |[eave yourselt some margin for error when submitting!

Next week is reading week

e No lectures or labs next week



Recap: Supervised Learning

Definition: A supervised learning task consists of

« Asetof input features X, ..., X

n

« Asetof target features Yy, ..., Y}

* A set of training examples, for which both input and target features are given
* A set of test examples, for which only the input features are given

The goal is to predict the values of the target features given the input features;
.e., learn a function i(x) that will map features X to a prediction of Y

 \We want to predict new, unseen data well; this is called generalization

* (Can estimate generalization performance by reserving separate test examples



Recap: Loss runctions

A loss function gives a quantitative measure of a hypothesis's performance

 [here are many commonly-used loss functions, each with its own properties

Loss Definition
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Propabllistic Predictors

* Rather than predicting exactly what a target value will be, many common
algorithms predict a probability distribution over possible values

 Especially for classification tasks

e \ectors of indicator variables are the most common data representation for this
scheme:

e Target features of training examples have a single 1 for the true value

* Predicted target values are probabilities that sum to



Probabllistic Predictions Example

Training examples Output on test example

.................................... - X h(X)cat h(X)aog h(X)panda

_____________________________________________________________________________________________________________________________________________________




L IKelinood

For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm

Definition:

The likelihood for a dataset S of examples and hypothesis /1 is the probability of independently observing the
examples according to the probabilities assigned by the hypothesis:

PrSIhy = || r,

* This has a clear Bayesian interpretation

* \We want to maximize likelihood, so it's not a loss (why?)
* Question: What is the corresponding loss?

 Numerical stability issues: product of probabilities shrinks exponentially!

. Example: Probability of any sequence of 5000 coin tosses has probability 2729

e Floating point underflows almost immediately
(double-precision floating point can't represent anything smaller than 2_1021)



|_og-Likelihood

Definition:
The log-likelihood for a dataset § of examples and hypothesis £ is the log-probability of
iIndependently observing the examples according to the probabillities assigned by the hypothesis:

log Pr(S | h) = log H h(x),
(x,y)es

= Z logh(x)y

(x,y)es

» Taking log of the likelihood fixes the underflow issue (why?)

e [he

maxi

Og |

‘unction grows monotonically, so maximizing log-likelihood is the same thing as

Mmiz

ng likelihood:
(Pr(S|hy) > Pr(S|hy)) < (logPr(S|h;) > logPr(S|hy))



Trivial Predictors

* [he simplest possible predictor ignores all input features and just predicts the
same value v for any example

* Question: \Why would we every want to think about these?



Optimal Trivial Predictors
for Binary Data

Measure Optimal Prediction
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Optimal Trivial Predictor Derivations
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| ecture Outline

1. Recap & Logistics

2. Irnvial Predictors

3. Linear Regression

4. Linear Classification

After this lecture, you should be able to:

* specify and/or implement linear regression, linear classification,
logistic regression

e explain the benetfits of different approaches to learning linear models




| Inear Regression

* Linear regression is the problem of fitting a linear function to a set of
training examples

* Both input and target features must be numeric

* Linear function of the input features:

h(X; W) =wyg+wx; + ... + wyx(e)

d
= Z Widi
=0
\

For convenience, we often add a special
"constant feature" x, = 1 for all examples



Ordinary Least-Squares

For the squared error loss, it is possible to find the optimal predictor for a dataset analytically:
2

n n

d
LWy =Y (v0 = O w®)) = Y |0 =N w0
=0

2. Recallthat VL(w*) = 0 for w* € arg min L(w)

3. Derive an expression for V L(w™*) and solve for O
» For d input features, solve a system of d + 1 equations
« Requires invertinga (d + 1) X (d + 1) matrix O(d>)
. Constructing the matrix requires adding n matrices (one for each example) O(nd?)

. Total cost: O(nd” + d°)



Gradient Descent

* [he analytic solution is tractable for small datasets with few input features

» ImageNet has about 14 million images with 256 X 256 = 65,536 input
features

* For others, we use gradient descent
e (Gradient descent is an iterative method to find the minimum of a function.

* [For minimizing error:

(t+1) 1 _ (1)
W, cwo = 0 error(S, w’)
J



Recap: Gradient Descen

* [he gradient of a function tells how to change every element of a vector to
Increase the function

o |f the partial derivative of x; is positive, increase Xx;

 Gradient descent:
teratively choose new values of x in the (opposite) direction of the gradient:

X1V — Xold — 7 V f(Xold) |

* This only works for sufficiently small CM

* Question: How much should we change x5 learning rate




Gradient Descent Variations

* Incremental gradient descent: update each weight after each example in turn

0 N
Vi<i<n: wj(t“) — wj(t) — 1]—— error ({(X(’),y(l))},w(f))
()wj Question
 Batched gradient descent: update each weight based on a batch of examples Why would we
0 ever use any
. (D 1) _ (1)
VS, : W e W S ® CHOL (Si, w ) of these?
J

 Stochastic gradient descent: update repeatedly on random examples:

0
Y .o IFD (1) _
1~ U({1,...,n}): W, - w n()w-(t)
J

error ({(x?,y™)}, w®)



| iInear Classification

For binary targets, we can use linear regression to do classification
WO + Wlxl + Wz.Xz — O

Represent binary classes by {—1, +1}

If regression target is negative, predict — 1, else predict + 1

d
h(X; w) = sgn Z WiX;

/ par

sgn returns +1 for positive arguments and -1 for negative arguments

he line defined by Z WiX; = = () is called the decision boundary
j=0



Probabllistic Linear Classification

 For binary targets represented by {0,1} or numeric input features, we
can use linear function to estimate the probability of the class

 Issue: we need to constrain the output to lie within [0, 1]

* [nstead of outputting results of the function directly, send it through an
activation function f : R — [0,1] instead:

d
h(x;w) =1 Z WiX;
j=0



| ogistic Regression

* A very commonly used activation function is the
logistic function:

S() =
Q Il +e!

* Linear classification with a logistic activation function is
often referred to as logistic regression:

Question: \What is the decision boundary in logistic regression”?




Non-Binary larget reatures

What if the target feature has k > 2 values?

1. Use k indicator variables

2. Learn each indicator variable separately

3. Normalize the predictions:

d
exp ( ijO Wy jxj)

h (X; W) = —Z xp (z] o ])



Summary

* Linear regression is a simple model for predicting real quantities

* Linear classification can be built from linear regression

* Based on sign of prediction ("discriminative"), or
* Using logistic regression ("probabilistic”)

 For non-binary target features, can normalize probabilistic predictions for
iINndividual classes

 Gradient descent is a general, widely-used training procedure (with several variants)
* Linear models can be optimized in closed form for certain losses

* |n practice often optimized with gradient descent



