
Linear Models

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §7.3



Assignment #2

Assignment #2 is due Thu Feb 29/2024 (two weeks from today) at 11:59pm

• Submissions past the deadline will have late penalty applied

• Leave yourself some margin for error when submitting!


Next week is reading week 
• No lectures or labs next week



Recap: Supervised Learning
Definition: A supervised learning task consists of


• A set of input features 


• A set of target features 


• A set of training examples, for which both input and target features are given


• A set of test examples, for which only the input features are given


The goal is to predict the values of the target features given the input features;  
i.e., learn a function  that will map features  to a prediction of 


• We want to predict new, unseen data well; this is called generalization


• Can estimate generalization performance by reserving separate test examples

X1, …, Xn

Y1, …, Yk

h(x) X Y



Recap: Loss Functions
• A loss function gives a quantitative measure of a hypothesis's performance


• There are many commonly-used loss functions, each with its own properties

Loss Definition

0/1 error

absolute error

squared error

worst case

likelihood

log-likelihood

n

∑
i=1

1 [y(i) ≠ h(x(i))]
n

∑
i=1

y(i) − h(x(i))

n

∑
i=1

(y(i) − h(x(i)))2

max
1≤i≤n

y(i) − h(x(i))

Pr(S ∣ h) = ∏
(x,y)∈S

h(x)y

log Pr(S ∣ h) = ∑
(x,y)∈S

log h(x)y
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Probabilistic Predictors

• Rather than predicting exactly what a target value will be, many common 
algorithms predict a probability distribution over possible values


• Especially for classification tasks


• Vectors of indicator variables are the most common data representation for this 
scheme:


• Target features of training examples have a single 1 for the true value


• Predicted target values are probabilities that sum to 1



Probabilistic Predictions Example

X Ycat Ydog Ypanda

1 0 0

0 1 0

X h(X)cat h(X)dog h(X)panda

0.5 0.45 0.05

Training examples Output on test example



Likelihood
For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm


Definition: 
The likelihood for a dataset  of examples and hypothesis   is the probability of independently observing the 
examples according to the probabilities assigned by the hypothesis:





• This has a clear Bayesian interpretation

• We want to maximize likelihood, so it's not a loss (why?)


• Question: What is the corresponding loss?


• Numerical stability issues: product of probabilities shrinks exponentially!


• Example: Probability of any sequence of 5000 coin tosses has probability !


• Floating point underflows almost immediately 
(double-precision floating point can't represent anything smaller than )

S h

Pr(S ∣ h) = ∏
(x,y)∈S

h(x)y

2−5000

2−1021



Log-Likelihood
Definition: 
The log-likelihood for a dataset  of examples and hypothesis   is the log-probability of 
independently observing the examples according to the probabilities assigned by the hypothesis:


 


• Taking log of the likelihood fixes the underflow issue (why?)


• The log function grows monotonically, so maximizing log-likelihood is the same thing as 
maximizing likelihood:


S h

log Pr(S ∣ h) = log ∏
(x,y)∈S

h(x)y

= ∑
(x,y)∈S

log h(x)y

(Pr(S |h1) > Pr(S |h2)) ⟺ (log Pr(S |h1) > log Pr(S |h2))



Trivial Predictors

• The simplest possible predictor ignores all input features and just predicts the 
same value  for any example


• Question: Why would we every want to think about these?

v



Optimal Trivial Predictors

for Binary Data

Measure Optimal Prediction

0/1 error 0 if n0 > n1 else 1 

absolute error 0 if n0 > n1 else 1

squared error

worst case

likelihood

log-likelihood

n1

n0 + n1
0 if n1 = 0
1 if n0 = 0
0.5 otherwise

n1

n0 + n1
n1

n0 + n1

• Suppose we are 
predicting a binary target


•  negative examples


•  positive examples


• Question: What is the 
optimal single prediction?

n0

n1



Optimal Trivial Predictor Derivations

0/1 error 0 if n0 > n1 else 1 L(v) = vn0 + (1 − v)n1

(negative)

log-likelihood

n1

n0 + n1

L(v) = − log Pr(S ∣ v)
= − n1 log v − n0 log(1 − v)

d
dv

L(v) = 0

0 = −
n1

v
+

n0

1 − v
n1

v
=

n0

1 − v
n1

n0
=

v
1 − v

∧ (0 < v < 1) ⟹ v =
n1

n0 + n1

d
dz

log z =
1
z

d
dz

log(1 − z) = −
1

1 − z



Lecture Outline
1. Recap & Logistics


2. Trivial Predictors


3. Linear Regression


4. Linear Classification

After this lecture, you should be able to:

• specify and/or implement linear regression, linear classification, 

logistic regression

• explain the benefits of different approaches to learning linear models



Linear Regression

• Linear regression is the problem of fitting a linear function to a set of 
training examples


• Both input and target features must be numeric


• Linear function of the input features:


h(x; w) = w0 + w1x1 + … + wdxd(e)

=
d

∑
j=0

wjxj

For convenience, we often add a special 

"constant feature"  for all examplesx0 = 1



Ordinary Least-Squares
For the squared error loss, it is possible to find the optimal predictor for a dataset analytically:


1. 


2. Recall that  for 


3. Derive an expression for  and solve for 0

• For  input features, solve a system of  equations

• Requires inverting a  matrix                                              

• Constructing the matrix requires adding  matrices (one for each example)   

• Total cost: 

L(w) =
n

∑
i=1

(y(i) − h(x(i); w(i)))2 =
n

∑
i=1

y(i) −
d

∑
j=0

w(i)
j x(i)

j

2

∇L(w*) = 0 w* ∈ arg min
w∈ℝd+1

L(w)

∇L(w*)
d d + 1

(d + 1) × (d + 1) O(d3)
n O(nd2)

O(nd2 + d3)



Gradient Descent

• The analytic solution is tractable for small datasets with few input features


• ImageNet has about 14 million images with  input 
features


• For others, we use gradient descent


• Gradient descent is an iterative method to find the minimum of a function.


• For minimizing error:


256 × 256 = 65,536

w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error(S, w(t))



Recap: Gradient Descent

• The gradient of a function tells how to change every element of a vector to 
increase the function


• If the partial derivative of  is positive, increase 


• Gradient descent:  
Iteratively choose new values of x in the (opposite) direction of the gradient:


 .


• This only works for sufficiently small changes (why?)


• Question: How much should we change ?

xi xi

xnew = xold − η∇f(xold)

xold learning rate



Gradient Descent Variations
• Incremental gradient descent: update each weight after each example in turn





• Batched gradient descent: update each weight based on a batch of examples





• Stochastic gradient descent: update repeatedly on random examples:


∀1 ≤ i ≤ n : w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error ({(x(i), y(i))}, w(t))

∀Si : w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error (Si, w(t))

i ∼ U({1,…, n}) : w(t+1)
j ← w(t)

j − η
∂

∂w(t)
j

error ({(x(i), y(i))}, w(t))

Question 

Why would we 
ever use any 
of these?



Linear Classification
• For binary targets, we can use linear regression to do classification


• Represent binary classes by 


• If regression target is negative, predict , else predict 


 

•
The line defined by  is called the decision boundary

{−1, +1}

−1 +1

h(x; w) = sgn
d

∑
j=0

wjxj

d

∑
j=0

wjxj = 0
 returns +1 for positive arguments and -1 for negative argumentssgn

x1

x 2

w0 + w1x1 + w2x2 = 0



Probabilistic Linear Classification 

• For binary targets represented by  or numeric input features, we 
can use linear function to estimate the probability of the class


• Issue: we need to constrain the output to lie within 


• Instead of outputting results of the function directly, send it through an 
activation function  instead:


{0,1}

[0,1]

f : ℝ → [0,1]

h(x; w) = f
d

∑
j=0

wjxj



Logistic Regression
• A very commonly used activation function is the 

logistic function:





• Linear classification with a logistic activation function is 
often referred to as logistic regression:


s(t) =
1

1 + e−t

h(x; w) = s
d

∑
j=0

wjxj
−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(t) =
1

1 + e−t

t

Question: What is the decision boundary in logistic regression?



Non-Binary Target Features
What if the target feature has  values?


1. Use  indicator variables


2. Learn each indicator variable separately


3. Normalize the predictions:


k > 2

k

hℓ(x; w) =
exp (∑d

j=0 wℓ,jxj)
∑k

p=1 exp (∑d
j=0 wp,jxj)



Summary
• Linear regression is a simple model for predicting real quantities


• Linear classification can be built from linear regression


• Based on sign of prediction ("discriminative"), or


• Using logistic regression ("probabilistic") 

• For non-binary target features, can normalize probabilistic predictions for 
individual classes 

• Gradient descent is a general, widely-used training procedure (with several variants)


• Linear models can be optimized in closed form for certain losses


• In practice often optimized with gradient descent 


