Calculus Refresher

CMPUT 261: Introduction to Artificial Intelligence

| ecture Outline

1. Recap
2. Gradient-based Optimization & Gradients

3. Numerical Issues

After this lecture, you should be able to:

* Apply the chain rule of calculus to functions of one or multiple arguments
* Explain the advantages and disadvantages of the method of differences
* Describe the numerical problems with softmax and how to solve them
e Explain why log probabillities are more numerically stable than probabillities

| oss Minimization

In supervised learning, we choose a hypothesis to minimize a loss function

Example: Predict the temperature

o Dataset: temperatures y(i) from a random sample of days

* Hypothesis class: Always predict the same value U

e [0SS function:

1 <&
_ () 2
L(p) . izzl, VY — u)

Optimization

Optimization: finding a value of x that minimizes f(x)

x* = arg min f(x)

» Temperature example: Find u that makes L(x) small

Gradient descent: lteratively move from current estimate in the direction that
makes f(x) smaller

* [or discrete domains, this is just hill climbing:
teratively choose the neighbour that has minimum f(x)

e For continuous domains, neighbourhood is less well-defined

Derivatives

— Ly L' ()
o d 4
. The derivative f'(x) = — f(x) of a
dx 3
function f(x) is the slope of fat point x 2
1
» When f'(x) > 0, fincreases with small
enough increases in x
-1
* When f'(x) < 0, f decreases with small -2
enough increases In x 3
4
11111222222225%8%¢

MVultiple Inputs

Example:
Predict the temperature based on pressure and humidity

o Dataset:
1 1] ’ -
(20,20, y D), o (307, 20,y) = {(x0,30) | 1 < i < m)

» Hypothesis class: Linear regression: h(X; W) = wy + W X; + Wy,

e [0SS function:

n

|
_ (D) _ (1).
L(w) = n E (h(x W))

=1

Partial Derivatives

Partial derivatives: How much does f(X) change when we only change one
of its inputs X;?

e (Can think of this as the derivative of a conditional function
2(2) =f(x1yccisZy ..y X):

200 = g0y
OX; § _dx-gxi'

l

GGradient

 The gradient of a function f(X) is just a vector that contains all of its
partial derivatives:

% — f(x)
VAX) =

Gradient Descent

* [he gradient of a function tells how to change every element of a vector to
Increase the function

o |f the partial derivative of x; is positive, increase Xx;

 Gradient descent:
teratively choose new values of x in the (opposite) direction of the gradient:

X1V — Xold — 7 V f(Xold) |

* This only works for sufficiently small CM

* Question: How much should we change x5 learning rate

Where Do Gradients Come From?

Question: How do we compute the gradients we need for gradient descent?

1. Analytic expressions / direct derivation

2. Method of differences

3. The Chain Rule (of Calculus)

. Analytic Expressions:
1D Derivatives

R <P
L(u) = ng}(y(z) mn

1 n - -
=— 2 PO’ - 0p +4°

Analytic Expressions:
Viultiple Arguments

To analytically find the gradient of a multi-input function, find the
partial derivative for each of the inputs (and then collect in a vector).

n

o =13 (50— wivo

=1

2
=_Z(<z>_Wx<z>_Wx<z>)

=1

= _ w12 D2 4 2w, w, x(’) (l) — 2w x(’)y + w3 2(1)2 2w2x2(i)y + y*

Analytic Expressions:
Viultiple Arguments

To analytically find the gradient of a multi-input function, find the
partial derivative for each of the inputs (and then collect in a vector).

1 .
L(w) = - Z w12 1(’)2 + 2w w, x(’) (l) — 2w x(l)y + w3 2(’)2 2w2x2(’)y + y?

0
WL(WI’ Wy) = Z 2w, x(’)2 + 2w, x(l) (’) 2x(’)y
1 =1

0
—L(wy, wy) = 2 2w, x(’)2 2w, x(l) (l) + 2x(’)y
8W2 i1

Analytic Expressions:
Viultiple Arguments

To analytically find the gradient of a multi-input function, find the
partial derivative for each of the inputs (and then collect in a vector).

oL Ly (i)2 () 1. (i)
VLo) = o | ;Zizl 2wx17 4+ 2wox Vx5 — 2xVy
— —~ Zi=1 2w2x§’) — 2w1xf’)x§l) + 2x§’)y

aWZ

2. Method ot Differences

Vector of 0's with a 1 in i-th position
oh

0
e.gd., el —_ .

0 .
—L(W) & L(W + €e;) — L(wW) 0.
awi

(for "sufficiently” tiny €)
Question: \Why would we ever do this?

Question: \What are the drawbacks?

3. Chain Rule (of Calculus):
1D Derivatives

dz dz dy

dx d_y dx
e, h(x) = f(g(x)) = h'(x) = f(g(x))g'(x)

* |f we know formulas for the derivatives of components of a function, then
we can build up the derivative of their composition mechanically

* Most prominent example: Back-propagation in neural networks

Chain Rule (of Calculus):
Multiple Intermediate Arguments

What if A(x) = f(g;(x), g2(x))?

dh df dg, N of dg,
dx 0g, dx 02, dx

Question: \Why do we add the partials via the two arguments”?

(*) Chain Rule (of Calculus):
Multiple Arguments

For multiple arguments, things look more complicated, but it's the same idea:
h(wla Wz) — f(gl(W19 W2)9 g2(W19 WZ))

| |
Vh(w;, wy) = | V& 1w, wy) Vyg(w,wy) |V g(w)f (g1 (w1, wy), g (Wi, w,))
| |

081wy, wy) 08 (W, wy) 0f(81 (w1, W), &(W1,)
. ow, ow, dg1(wy)
B ag (W, wp) 0gr(wy, wy) df(g1(wi, wy), g (wy, wz))
oW, oW, 08>(W>)

of(81w, o), (W1, wy)) g, (wy, wy) of (g1 (w1, wa), &(Wi, W) dg,(wy, wy)
ag(wy) ow; 0g,(w,) ow;

of (g1 (w1, wy), &(Wi, wa)) dg, (wy, wy) of(g1(w1, wy), (W1, wy)) dg,(wy, wy)
ag;(wy) ow, dg,(w») ow,

Approximating Real Numbers

Computers store real numbers as finite number of bits
Problem: There are an infinite number of real numbers in any interval

Real numbers are encoded as floating point numbers:

+ 1.001...011011 x 21001.0011

significand exponent

* Single precision: 24 bits significand, 8 bits exponent
* Double precision: 53 bits significand, 11 bits exponent

Deep learning often uses single precision!

1001...0011

U n d e rﬂ OW 1.001...011010 X 27 wwmer

significand

e Positive numbers that are smaller than 1.00...01 x 2-1111..1111 will be rounded
down to zero

* Negative numbers that are bigger than -1.00...01 x 2-1111.. 1117 wil| be
rounded up to zero

 Sometimes that's okay! (Almost every number gets rounded)

e Often it's not (when?)

 Denominators: causes divide-by-zero
* |o0Q: returns -inf

* |og(negative): returns nan

1001...0011

Overflow oo™

significand

Numlbers bigger than 1.111...1111 x 21111 will be rounded up to infinity

Numbers smaller than -1.111...1111 x 21111 will be rounded down to
negative infinity

exp Is used very frequently
* Underflows for very negative inputs
* Qverflows for "large" positive inputs

89 counts as "large’

1001...0011

Addition/Subtraction ™

* Adding a small number to a large number can have no effect (why?)

Example:
>>> A =np.array([O., 1e-8])
>>> A =np.array([0., 1e-8]).astype('float3:")

S O
>>> A&PgmaX() \ \-Qs. \.Q'.. \.Q'.. \.Q".
1 1e-8 is not the : ’ ’ ’ ’ ’ ’ ’

L0
L0
L0
L0

>>> (A + 1).argmax() smallest possible 6t
float32
O
>>> A+]1 27 % 59% 1078

array([1., 1.], dtype=float3:)

Softmax

exp(x;)

softmax(X); = —; —
J

j=1
e Softmax is a very common function

* Used to convert a vector of activations (i.e., numbers) into a probability
distribution

« Question: Why not normalize them directly without exp?

« But exp overflows very quickly:

. Solution: softmax(z) where Z = X — max x;
J

| OgQ

Dataset likelihoods shrink exponentially quickly in the number of datapoints

Example:

. Likelihood of a sequence of 5 fair coin tosses = 27> = 1/32

» Likelihood of a sequence of 100 fair coin tosses = 2~100

Solution: Use log-probabilities instead of probabilities

log(pprps---.p,) =logp, + ... +1logp,
log-prob of 1000 fair coin tosses is 100010g 0.5 ~ — 693

(General Solution

* Question:
What is the most general solution to numerical problems?

- Standard libraries

 Pylorch, Theano, lensorflow, etc. detect common unstable expressions

e ScCipy, numpy have stable implementations of many common patterns
(e.q., softmax, logsumexp, sigmoid)

Summary

Gradients are just vectors of partial derivatives
e (Gradients point "uphill”

Chain Rule of Calculus lets us compute derivatives of function
compositions using derivatives of simpler functions

Learning rate controls how fast we walk uphill
Deep learning Is fraught with numerical issues:
* Underflow, overflow, magnitude mismatches

 Use standard implementations whenever possible

