
Supervised Learning 
Introduction & Framework

CMPUT 261: Introduction to Artificial Intelligence 
 

P&M §7.1-7.3



Assignments

• Assignment #2 is now available


• Due Feb 29/2024 (three weeks from today) at 11:59pm



Recap: Uncertainty
• We represent uncertainty about the world by probabilities


• We update our knowledge by conditioning on observations

• Observations = learning the value of a random variable


• Full, unstructured joint distributions are intractable to reason about

• Conditional independence is a kind of structure that is:


1. widespread

2. easy to reason about

3. allows tractable inference (computing distribution of unobserved variables)


• Belief networks let us compactly represent joint distributions with a lot of 
conditional independence


• Variable elimination is an algorithm for efficient inference on belief networks



Supervised Learning, informally
• In the uncertainty section, we took the probability distribution as given


• Our only problem was to represent and derive distributions

• Question: Where do these probabilities come from?

• Supervised learning is a way to learn probabilities from examples


• Probability of a target feature (or label) given input features

• i.e., condition on input features to get probability of target 


• Basic idea:

• Take a bunch of inputs (e.g., images) and "correct" outputs

• Learn a model that correctly maps inputs to outputs



Supervised Learning vs. 
Machine Learning vs. Deep Learning

What is the difference between Supervised Learning, Machine Learning, and Deep Learning?

supervisedreinforcement

unsupervised

Artificial 
Intelligence

Machine Learning

Deep

Learning

1

2



Lecture Outline
1. Recap & Logistics

2. Supervised Learning Problem

3. Measuring Prediction Quality

After this lecture, you should be able to:

• define supervised learning task, classification, regression, loss function

• represent categorical target values in multiple ways (indicator variables, indexes)

• define generalization performance

• identify an appropriate loss function for different tasks

• explain why a separate test set estimates generalization performance

• define 0/1 error, absolute error, (log-)likelihood loss, mean squared error, worst-case 

error



Supervised Learning
Definition: A supervised learning task consists of


• A set of input features 


• A set of target features 


• A set of training examples   
sampled randomly from some population


• A set of test examples  
sampled from the same population

X1, …, Xd

Y1, …, Yk

S = {(x(i), y(i))}n
i=1

T = {(x(i), y(i))}m
i=1

The goal is to predict the values of the target features given the input features;  
i.e., learn a function  that will map features  to a prediction of 


• Classification:  are discrete


• Regression:  are real-valued

h(x) X Y
Yi

Yi



Supervised Learning Examples
1. Computational vision: Given example images and labels representing objects, output a label 

for the main object in the image

• Input features: Pixel values of the image

• Target features: One feature for each label (e.g., dog, plane, etc.)


2. Precision medicine: Given examples of symptoms, test results, and treatments, output an 
estimate of recovery time

• Input features: symptoms, treatment indicators, test results, demographic information

• Target features: recovery time, survival time, etc.


3. Natural language processing: Given example sentences and labels representing 
"sentiment", output how positive or negative the sentence is

• Input features: binary indicators for words or characters (**!)

• Target features: One feature per label (e.g., positive, negative)



Regression Example
• Aim is to predict the value of target  based on 

features 


• Both  and  are real-valued


• Exact values of both targets and features may 
not have been in the training set


• Input 8 is an interpolation problem:  is within 
the range of the training examples' values


• Input 9 is an extrapolation problem:  is 
outside the range of the training examples' 
values

Y
X

X Y

X

X

i x(i) y(i)
1 0.7 1.7
2 1.1 2.4
3 1.3 2.5
4 1.9 1.7
5 2.6 2.1
6 3.1 2.3
7 3.9 7

8 2.9 ?
9 5.0 ?

i



Data Representation
• For real-valued features, we typically just record the feature values


• For discrete features, there are multiple options:


• Binary features: Can code  as  or 


• Can record numeric values for each possible value


• Cardinal values: Differences are meaningful (e.g., )


• Ordinal values: Order is meaningful (e.g., )


• Categorical values: Neither differences nor order meaningful (e.g., )


• Vector of indicator variables: One per feature value, exactly one is true 
(sometimes called a "one-hot" encoding)  (e.g.,  as ,  as , etc.)

{false, true} {0,1} {−1, +1}

1,2,7

Good, Fair, Poor

Red, Green, Blue

Red (1,0,0) Green (0,1,0)



Classification Example:

Holiday Preferences

• An agent wants to learn a person's preference for the length of holidays


• Holiday can be for 1,2,3,4,5, or 6 days


• Two possible representations:

i y(i)

1 1

2 6

3 6

4 2

5 1

i y(i)1 y(i)2 y(i)3 y(i)4 y(i)5 y(i)6

1 1 0 0 0 0 0

2 0 0 0 0 0 1

3 0 0 0 0 0 1

4 0 1 0 0 0 0

5 1 0 0 0 0 0

Question: 


What are the 
advantages/
disadvantages of 
each representation?



Generalization
• Question: What does it mean for a trained model to perform well?


• We want to be able to make correct predictions on unseen data, not just the 
training examples


• We are even willing to sacrifice some training accuracy to achieve this


• We want our learners to generalize: to go beyond the given training 
examples to classify new examples well


• Problem: We can't measure performance on unobserved examples!


• We can estimate generalization performance by evaluating performance on the 
test set (Why?)


• The learning algorithm doesn't have access to the test data, but we do



Generalization Example

Example: Consider binary two classifiers, P and N


• P classifies all the positive examples from the training data 
as , and all others as 


• N classifies all of the negative examples from the training 
data as , and all others as 


Question: Which classifier performs better on the training data?


Question: Which classifier generalizes better?

true false

false true



Bias
• The hypothesis is the function  that we learn


• The hypothesis space is the set of possible hypotheses


• "Training a model" =  
"Choosing a hypothesis from the hypothesis space based on data"


• A preference for one hypothesis over another is called bias


• Bias is not a bad thing in this context!


• Preference for "simple" models is a bias 


• Which bias works best for generalization is an empirical question

h(X)



Measuring Prediction Error

• We choose our hypothesis partly by measuring its performance on training data


• Question: What is the other consideration?


• This is usually described as minimizing some quantitative measurement of error 
(or loss)


• Question: What might error mean?



0/1 Error
Definition: 
The 0/1 error for a dataset of  examples and hypothesis  is the number of examples for 
which the prediction was not correct:


 


• Not appropriate for real-valued target features (why?)


• Does not take into account how wrong the answer is


• e.g., 


• Most appropriate for binary or categorical target features

n h

n

∑
i=1

1 [y(i) ≠ h(x(i))]

1 [2 ≠ 1] = 1 [6 ≠ 1]

 is indicator function:

 value is 1 if the expression 

in brackets is TRUE, else 0

1[ ⋅ ]



Absolute Error
Definition: 
The absolute error for a dataset of  examples and hypothesis   is the sum of 
absolute distances between the predicted target value and the actual target value:





• Meaningless for categorical variables


• Takes account of how wrong the predictions are


• Most appropriate for cardinal or possibly ordinal values

n h

n

∑
i=1

y(i) − h(x(i))



Squared Error
Definition: 
The squared error (or sum of squares error or mean squared error) for a dataset of 

 examples and hypothesis   is the sum of squared distances between the 
predicted target value and the actual target value:





• Meaningless for categorical variables


• Takes account of how wrong the predictions are


• Large errors are much more important than small errors


• Most appropriate for cardinal values

n h

n

∑
i=1

(y(i) − h(x(i)))2



Worst-Case Error
Definition: 
The worst-case error for a dataset of  examples and hypothesis   is the maximum 
absolute difference between the predicted target value and the actual target value:


• Meaningless for categorical variables


• Takes account of how wrong the predictions are


• but only on one example 
(the one whose prediction is furthest from the true target)


• Most appropriate for cardinal values

n h

max
1≤i≤n

y(i) − h(x(i))



Probabilistic Predictors

• Rather than predicting exactly what a target value will be, many common 
algorithms predict a probability distribution over possible values


• Especially for classification tasks


• Vectors of indicator variables are the most common data representation for this 
scheme:


• Target features of training examples have a single 1 for the true value


• Predicted target values are probabilities that sum to 1



Probabilistic Predictions Example

X Ycat Ydog Ypanda

1 0 0

0 1 0

X h(X)cat h(X)dog h(X)panda

0.5 0.45 0.05

Training examples Output on test example



Likelihood
• For probabilistic predictions, we can use likelihood to measure the performance of a learning algorithm


Definition: 
The likelihood for a dataset  of examples and hypothesis   is the probability of independently observing the 
examples according to the probabilities assigned by the hypothesis:





• This has a clear Bayesian interpretation

• We want to maximize likelihood, so it's not a loss (why?)


• Question: What is the corresponding loss?


• Numerical stability issues: product of probabilities shrinks exponentially!


• Example: Probability of any sequence of 5000 coin tosses has probability !


• Floating point underflows almost immediately 
(double-precision floating point can't represent anything smaller than )

S h

Pr(S ∣ h) = ∏
(x,y)∈S

h(x)y

2−5000

2−1021



Log-Likelihood
Definition: 
The log-likelihood for a dataset  of examples and hypothesis   is the log-probability of 
independently observing the examples according to the probabilities assigned by the hypothesis:


 


• Taking log of the likelihood fixes the underflow issue (why?)


• The log function grows monotonically, so maximizing log-likelihood is the same thing as 
maximizing likelihood:


S h

log Pr(S ∣ h) = log ∏
(x,y)∈S

h(x)y

= ∑
(x,y)∈S

log h(x)y

(Pr(S |h1) > Pr(S |h2)) ⟺ (log Pr(S |h1) > log Pr(S |h2))



Trivial Predictors

• The simplest possible predictor ignores all input features and just predicts the 
same value  for any example


• Question: Why would we every want to think about these?

v



Optimal Trivial Predictors

for Binary Data

Measure Optimal Prediction

0/1 error 0 if n0 > n1 else 1 

absolute error 0 if n0 > n1 else 1

squared error

worst case

likelihood

log-likelihood

n1

n0 + n1

0 if n1 = 0
1 if n0 = 0
0.5 otherwise

n1

n0 + n1
n1

n0 + n1

• Suppose we are 
predicting a binary target


•  negative examples


•  positive examples


• Question: What is the 
optimal single prediction?

n0

n1



Optimal Trivial Predictor Derivations

0/1 error 0 if n0 > n1 else 1 L(v) = vn0 + (1 − v)n1

(negative)

log-likelihood

n1

n0 + n1
L(v) = − n1 log v − n0 log(1 − v)

d
dv

L(v) = 0

0 = −
n1

v
+

n0

1 − v
n1

v
=

n0

1 − v
n1

n0
=

v
1 − v

∧ (0 < v < 1) ⟹ v =
n1

n0 + n1



Summary
• Supervised learning is learning a hypothesis function from training examples


• Maps from input features to target features


• Classification: Discrete target features


• Regression: Real-valued target features


• Preferences among hypotheses are called bias


• Choice of error measurement (loss) is an important design decision


• Different losses have different optimal trivial predictors


• Trivial predictors are a baseline: your real model better outperform the 
trivial predictor


