Conditional Independence

CMPUT 261: Introduction to Artificial Intelligence



Assignment #1

 Assignment #1 is due THURSDAY at 11:59pm

e Hand in on eClass

e Hints:

* You do not need to draw a picture of the graph; just fully specify it

 Remember, most graphs in practice will be too big to store!

* Every arc leaving a state corresponds to an action available at that state

* [he destination of a state Is the new state from taking the action

* Different states might have di
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* | will create a superthread for responses, with detailed rules (e.g. deadlines)



| ecture Outline

1. Recap
2. Structure
3. Marginal Independence

4. Conditional Independence

After this lecture, you should be able to:
* Define marginal and conditional independence
 Compute joint probabilities by exploiting marginal and conditional independence

o Compute the minimal number of quantities needed to define a joint distribution
given a particular structure / generating process

e |dentity marginally or conditionally independent random variables




Recap: Probability

* Probability is a numerical measure of uncertainty
* Not a measure of truth
 Semantics:
* A possible world is a complete assignment of values to variables
* Every possible world has a probabillity

* Probabllity of a proposition is the sum of probabillities of possible worlds
N which the statement Is true




Recap:
Conditional Probability

 When we receive evidence in the form of a proposition e, it rules out all of the
possible worlds in which e is false

* We set those worlds' probabillity to 0, and rescale remaining probabillities to
sum to 1

» Result is probabilities conditional on e: P(h | e)



Unstructured
Joint Distributions

* Probabilities are not fully arbitrary

 Semantics tell us probabilities given the joint distribution.
* Semantics alone do not restrict probabilities very much

* |n general, we might need to explicitly specify the entire joint distribution

» Question: Can | just assign arbitrary numbers in [0,1] to combinations of values?

* Question: How many numbers do we need to assign to fully specify a joint
distribution of k binary random variables?

 We call situations where we have to explicitly enumerate the entire joint distribution
unstructured



Structure

* Unstructured domains are very hard to reason about

* Fortunately, most real problems are generated by some sort of
underlying process

* This gives us structure that we can exploit to represent and reason
about probabilities iIn a more compact way

 \We can compute any required joint probabillities based on the process,
iINnstead of specitying every possible joint probability explicitly

o Simplest kind of structure is when random variables don't interact



Generating Process

Example: | keep flipping a fair coin until it come up Heads

2.
» Let S be arandom variable that counts how many times |
flipped the coin 3
 Knowing the process that generates the probabilities
gives us a way to compute the probabillities rather than
explicitly specitying each one individually A

Example 2: Same as example 1, except that the coin comes
up heads with probabillity p

Questions:

 What is Pr(S = 1)?

What is Pr(S = k)
(for integer k > 07?)

. How many numbers

would | have to assign
to explicitly describe
this distribution?

How many numbers
would | need to assign
to succinctly describe
the distribution from
—xample 27




Marginal Independence

Definition:
Random variables X and Y are marginally independent iff

1. PX=x|Y=y)=PX =x), and
2. PY=y|X=x)=P =Yy)

for all values of x € dom(X) and y € dom(Y).




Marginal Independence Example

» | flip four fair coins, and get four results: C, C,, C5, C4
» Question: What is the probability that C; is heads?
» P(C; = heads)
» Suppose that C,, C5, and C, are tails
» Question: What is the conditional probability that C,; is heads?

« P(C, = heads | C, = tails, C5 = tails, C, = tails)
o Why?



Properties of Marginal Independence

Proposition:
if X and Y are marginally independent, then

PX=x,Y=y)=PX=x)P(Y =Yy)

for all values of x € dom(X) andy € dom(Y).

Proof:

L PH=5Y =) =X = x|V = )P =)

2. PX=x,Y=y)=PX=x)P(Y =y)
-




EXploiting
Marginal Independence

* |nstead of storing the entire joint distribution, we
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can store 4 marginal distributions, and use them CHOH T 0.0695
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e Question: How many numbers do we need to T OH H 00655
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Clock Scenario

Example:

* | have a stylish but impractical clock with no number markings

e [wo students, Alice and Bob, both look at the clock at the same
time, and form opinions about what time it is

* Their opinion of the time is directly affected by the actual time

 They don't talk to each other, so Alice's opinion of the time is
not affected by Bob's opinion of the time (& vice versa)

Random variables:
e Question: Are A and B marginally independent?

P(A | B) £ P(A) A - Time Alice thinks it is
« Question: If we know it is 10:09. Are A and B independent? B - Time Bob thinks it is




Conditional Independence

When conditioning on the value of a third variable Z makes two variables A, B
independent, we say that they are conditionally independent given Z.

Definition:
Random variables X and Y are conditionally independent given Z iff

PX=x|Y=y,Z=2)=PX=x|Z=72)

for all values of x € dom(X), y € dom(Y), and z € dom(Z).
We can write this using the notaton X 1L Y | Z .

.e., X 1L Y | Ziff knowing Z means that learning A gives no additional information about B.

Clock example: A and B are conditionally independent given 7.




Properties of
Conditional Independence

Proposition:
if X and Y are conditionally independent given Z, then

PX=x,Y=y|Z=2))=PX=x|Z=2)P(Y=y|Z=7)

for all values of x € dom(X), y € dom(Y), and z € dom(Z).

Proof:

1. PX=x,Y=v|Z=2=IPX=x|Y=y,Z=2P(Y=y | Z = 7)

2. PX=xY=y|Z=2)=PX=x|2)PY=y|Z=72)
_




Properties of
Conditional Independence

Question: Is conditional independence commutative?

e je,If XA Y|ZisitalsotruethatY 1L X | Z7

Proof:

X1Y|Z < PX,Y|Z)=PX|2)PY|Z)
= PY,X|Z2)=PY|2)P(X|Z)
= YU X|Z _



Exploiting Conditional Independence

if X and Y are marginally independent given Z, then we can again just store smaller
tables and recover joint distributions by multiplication.

 Question: How many tables do we need to store in order to be able to compute
the joint distribution of X, Y, Z when X and Y are independent given Z?

* i.e., how many tables to be able to compute P(X = x, Y =y, Z = 7) for every
combination of x, y, z”

Preview: In the upcoming lectures, we will see how to efficiently exploit complex
structures of conditional independence




Simplified Clock Example

12 1 0.25 129 1 0095 1 0
1 1 0.50 2 110
T 1 05 PA=1B=2T=2)
> 1 025 > 1 025 3 1710 —PA=1|T=2PB=2|T=2)PT=2)
1 2 0.25 1 9 025 4 110 =0.25x%x0.5x%x0.10
> 2 050 > 2 05 5 1710 = 00123
3 2 025 3 2 025 6 1710
. 1D PA=1B=2T=1)
2 3 025 2 3 025 . o =PA=1|T=1D)PB=2|T=DP(T=1)
3 3 0.50 3 3 0.5 = 0.5%x0.25x0.0
4 3 025 4 3 025 > 1710 =0
10 1/10
O O
o o 11 1/10

12 0



vwvarnings

* (QOften, when two variables are marginally independent, they are also conditionally independent
given a third variable

 E.g., coins Cy, and C, are marginally independent, and also conditionally independent given
C5: Learning the value of C5 does not make C, any more informative about C;.

* [hisis not always true

« Consider another random variable: B is true if both C; and C, are the same value
« (C;and C,are marginally independent: P(C; = heads | C, = heads) = P(C, = heads)
» Infact, C; and G, are also both marginally independent of B: P(C; | B = true) = P(C))

« Butif I know the value of B, then knowing the value of C; tells me exactly what the value of C,
must be: P(C; = heads | B = true, C, = heads) # P(C, = heads | B = true)

» (;and (G, are not conditionally independent given B



Summary

* Unstructured joint distributions are exponentially expensive to represent (and
operate on)

* Marginal and conditional independence are especially important forms of
structure that a distribution can have

e Vastly reduces the cost of representation and computation

« Beware: The relationship between marginal and conditional independence
IS not fixed

* Joint probabillities of (conditionally or marginally) independent random variables
can be computed by multiplication




