
Logistics
• Assignment #4 is due April 11 (this Thursday) at 11:59pm 

• Late submissions for 20% deduction until April 15 at 11:59pm 

• SPOT (formerly USRI) surveys are now available 
• Available until April 14 at 11:59pm 
• You should have gotten an email 
• Please do fill one out, even if you weren't here for today's 

lecture

https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start


Goal Recognition Design
William Yeoh 
Computer Science and Engineering 
Washington University in St. Louis
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• A Goal Recognition Model: 
• Trying to identify the goal  of an agent based on its observations :


•  is the probability that  is the true goal (assumed to be given)

•  is the probability that we observe  given than  is the true 

goal

• Based on the cost of the trajectory observed so far

• The closer its cost to the optimal cost, the larger the probability

P(G) G
P(O |G) O G

Goal Recognition
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P(G |O) = α P(O |G) P(G)

Ramírez and Geffner: Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners. AAAI 2010
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• Applications:

• Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

Goal Recognition
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Tavakkoli, Kelley, King, Nicolescu, Nicolescu, and Bebis. A vision-based architecture for intent recognition. International Symposium on Advances in Visual Computing 2007(a) Follow (b) Meet (c) Pass by

Fig. 5. Intent recognition for diÆerent activities.

Dropping oÆ an object. While executing these activities, the robot monitors the
changes in the corresponding behaviors’ goals.

For a meeting activity, the angle and distance to the other person are pa-
rameters relevant to the goal. The robot’s observable symbol alphabet models
all possible combinations of changes that can occur: increasing (++), decreas-
ing (°°), constant (==), or unknown (?). The underlying intent of actions is
encoded in the HMMs’ hidden states.

Repeated execution of a given activity provides the data used to estimate
the model transition probabilities aij and bjk using the Baum-Welch algorithm
[11]. During the training stage, the observed, visible states are computed by the
observer from its own perspective.

Intent Recognition. The recognition problem consists of inferring, for each
observed agent, the intent of the actions they most likely perform from the
previously trained HMM’s. The observer robot monitors the behavior of all the
agents of interest with respect to other agents or locations. Since the observer is
now external to the scene, the features need to be computed from the observed
agents’ perspective rather than from the observer’s own point of view. These
observations consist of monitoring the same goal parameters that have been
used in training the HMM.

For each agent and for all HMM’s, the robot computes the likelihood that the
sequence of observations has been produced by each model, using the Forward
Algorithm [12]. To detect the most probable state that represents the intent
of an agent we consider the intentional state emitted only by the model with
highest probability. For that model, we then use the Viterbi Algorithm [13] to
detect the most probable sequence of hidden states.

4 Experimental Results

To validate our approach we performed experiments with a Pioneer 2DX mobile
robot, with an onboard computer, a laser rangefinder and a PTZ Sony camera.
The experiments consisted of two stages: the activity modeling phase and the
intent recognition phase.

During activity modeling, the robot was initially equipped with controllers
for following, meeting or passing by a person for several runs of each of the
three activities. The observations gathered from these trials were used to train
the HMM’s. The goal parameters monitored in order to compute the observable
symbols are the distance and angle to the human, from the robot’s perspective.
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sequence of observations has been produced by each model, using the Forward
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of an agent we consider the intentional state emitted only by the model with
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During activity modeling, the robot was initially equipped with controllers
for following, meeting or passing by a person for several runs of each of the
three activities. The observations gathered from these trials were used to train
the HMM’s. The goal parameters monitored in order to compute the observable
symbols are the distance and angle to the human, from the robot’s perspective.

Tavakkoli, Kelley, King, Nicolescu, Nicolescu, and Bebis. A vision-based architecture for intent recognition. International Symposium on Advances in Visual Computing 2007
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• Applications:

• Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

• Software personal assistants [Oh et al., 2010, 2011]

Goal Recognition

11

Source: http://assets.pewresearch.org/
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• Applications:

• Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

• Software personal assistants [Oh et al., 2010, 2011]

• Intelligent tutoring systems [McQuiggan et al., 2008; Johnson, 2010; 

Min et al., 2014]

Goal Recognition
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The game adapts to the actions of the player, and goal recognition algorithms within the game aims
to recognize and interpret the goals of the players based on their actions. This interactive system
allows teachers to accurately diagnose students’ problem-solving abilities and assess the concepts
that students understand as well as possible misconceptions that they may possess.

Figure 2: Screenshots of Crystal Island

It is clear that the design of this game can benefit from many of the progress and advances made
in GRD. For example, one may design scenarios in the game such that signals of misconceptions
are distinct from signals of correct understanding of concepts so that they may be diagnosed as
early as possible. However, to the best of our knowledge, designers of the game have thus far not
considered GRD techniques yet. We are in contact with the game designers, where they have very
generously provided us access to their game as well as a repository of data that they have collected
in their many experimental trials [40]. We are planning to look more closely at the game and data
provided and investigate the feasibility of incorporating GRD algorithms within the game, and
using the game as a GRD benchmark for other researchers.

4 Broader Impacts of the Proposed Work
As the findings from this line of research is orthogonal to the progress in goal recognition research,
our long-term impact includes the potential to improve the efficiency and applicability of the general
class of goal recognition algorithms in real-world applications by making their underlying problems
simpler to solve. Immediate results from the proposed research will directly benefit two groups of
people: (1) Related research communities and (2) underrepresented students at NMSU.

4.1 Research Communities

Aside from the immediate impact of spurring development in the GRD community, which is very
much in its infancy, this project will also benefit the MDP and ASP communities directly. For
example, algorithms that efficiently search for all boundedly-suboptimal policies are, to the best of
our knowledge, not yet investigated by the MDP community. Similarly, solving minimax optimiza-
tion functions efficiently in ASP is also not yet investigated. As such, the advancements made in
this project will also benefit the MDP and ASP communities. Additionally, this project will also
stimulate cross fertilization of both areas by bridging the two communities through GRD problems.

4.2 Education and Outreach

Courses: Aside from incorporating the results of this research in traditional courses on artificial
intelligence, we plan to develop a new undergraduate course on agent systems that will cover some
of these models and solution approaches. We plan to use science-fiction movies as a tool to motivate
and teach these concepts (e.g., anticipating the goal of villains often appear in movies). Based on
the success of a similar class at USC by Tambe, we believe students will relate better to this
motivation and will thus be more excited to learn the technical content of the course. We also plan
to develop a graduate version of this course, which will cover the material in more detail. These
courses will also be used as a platform for recruiting students to conduct research in the area.

Project Description – 14

Source:  http://projects.intellimedia.ncsu.edu/crystalisland/
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• Applications:

• Human-robot interactions [Tvakkoli et al., 2007; Kelley et al., 2012]

• Software personal assistants [Oh et al., 2010, 2011]

• Intelligent tutoring systems [McQuiggan et al., 2008; Johnson, 2010; 

Min et al., 2014]

• Security applications [Jarvis et al., 2005]

Goal Recognition
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Source:  http://www.walbridge.com/Source:  http://www.netralnews.com/
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• Goal Recognition Design (GRD): 
• Introduced by Sarah Keren, Avigdor Gal, Erez Karpas at ICAPS 2014

• How to modify/design the underlying environment to improve goal 

recognition?

• Orthogonal to goal recognition; advances made will complement 

advances in goal recognition

Goal Recognition

15
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• Assumptions:

• Agent acts optimally

• Environment is fully observable

• Agent’s action outcomes are deterministic

Goal Recognition Design

16
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Keren, Gal, and Karpas: Goal Recognition Design. ICAPS 2014 
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• High-level idea:

• Assess the difficulty of the problem using a metric called worst-case 

distinctiveness (wcd)

• Find minimal modification to the environment that minimizes wcd

• subject to requirement that optimal cost to each goal remains 

unchanged

Goal Recognition Design
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• Goal Recognition Design (GRD): 
• Agent acts optimally

• Environment is fully observable

• Agent’s action outcomes are deterministic 

• Stochastic GRD (S-GRD): 
• Agent acts optimally

• Environment is fully observable

• Agent’s action outcomes are stochastic

• Important in some applications (e.g., robotic, cybersecurity, etc.)

Stochastic GRD

21

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. IJCAI 2016
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• Goal Recognition Design (GRD): 
• Agent acts optimally

• Environment is fully observable

• Agent’s action outcomes are deterministic 

• Stochastic GRD (S-GRD): 
• Agent acts optimally

• Environment is fully observable

• Agent’s action outcomes are stochastic

• Important in some applications (e.g., robotic, cybersecurity, etc.)

• … and in some wizarding worlds!! 

Stochastic GRD

22

Wayllace, Hou, Yeoh, and Son: Goal Recognition Design with Stochastic Agent Action Outcomes. IJCAI 2016
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Source: https://www.youtube.com/watch?v=vNc43oKqQzg
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Source: https://www.youtube.com/watch?v=uFvizAQHJz8
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Harry Potter

Source: https://littlefallingstar.deviantart.com/art/Marauders-Map-page-1-379091499
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Source: https://littlefallingstar.deviantart.com/art/Marauders-Map-page-1-379091499
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Harry Potter

Source: https://littlefallingstar.deviantart.com/art/Marauders-Map-page-1-379091499
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• Key observations:

• Set of possible goals depends on the observed path to the state

• wcd computation is no longer Markovian in the original state space

Stochastic GRD
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• Approach: Model the problem using augmented MDPs

• wcd computation is now Markovian in the augmented state space

• Use standard MDP algorithms (e.g., VI) to compute wcd

• Agent can take max of two actions without revealing its goal (wcd = 2) 

• Paths:   s0, a0, s1, a1, s2      —or —    s0, a0, s2, a3, s3      

Stochastic GRD
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• Goal Recognition Design (GRD): 
• Agent acts optimally

• Environment is fully observable

• Agent’s action outcomes are deterministic 

• Stochastic GRD (S-GRD): 
• Agent’s action outcomes are stochastic


• Partially-Observable S-GRD (S-GRD): 
• Agent’s action outcomes are stochastic 
• Environment is partially-observable

• agent actions are not observable; states are partially observable

• more realistic in some applications (robotics, navigation, etc.)

Partially-Observable S-GRD

36

Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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Wayllace, Keren, Gal, Karpas, Yeoh, and Zilberstein: Accounting for Observer's Partial Observability in Stochastic Goal Recognition Design. ECAI 2020
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• Goal Recognition


• Goal Recognition Design


• Stochastic Goal Recognition Design


• Partially-Observable Stochastic Goal Recognition Design


• Ongoing Work: Data-driven Goal Recognition Design

Content

48



Slide /16

Data-Driven GRD

49

Literature Suboptimal 
Agent

Stochastic 
Actions

Partially 
Observable 
Environment

Action 
Removal

Sensor 
Refinement

Action 
Conditioning

Keren et al. (ICAPS 2014) ✔

Keren et al. (AAAI 2015) ✔ ✔

Son et al. (AAAI 2016) ✔

Keren et al. (AAAI 2016) ✔ ✔ ✔ ✔

Keren et al. (IJCAI 2016) ✔ ✔ ✔

Wayllace et al. (IJCAI 2016) ✔ ✔

Ang et al. (IJCAI 2017) ✔

Wayllace et al. (IJCAI 2017) ✔ ✔

Keren et al. (ICAPS 2018) ✔ ✔ ✔ ✔ ✔

Keren et al. (JAIR 2018) ✔ ✔ ✔ ✔ ✔

Wayllace et al. (AAAI 2019) ✔ ✔ ✔

Wayllace et al. (ECAI 2020) ✔ ✔ ✔ ✔
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Literature Suboptimal 
Agent

Stochastic 
Actions

Partially 
Observable 
Environment

Action 
Removal

Sensor 
Refinement

Action 
Conditioning

Keren et al. (ICAPS 2014) ✔

Keren et al. (AAAI 2015) ✔ ✔

Son et al. (AAAI 2016) ✔

Keren et al. (AAAI 2016) ✔ ✔ ✔ ✔

Keren et al. (IJCAI 2016) ✔ ✔ ✔

Wayllace et al. (IJCAI 2016) ✔ ✔

Ang et al. (IJCAI 2017) ✔

Wayllace et al. (IJCAI 2017) ✔ ✔

Keren et al. (ICAPS 2018) ✔ ✔ ✔ ✔ ✔

Keren et al. (JAIR 2018) ✔ ✔ ✔ ✔ ✔

Wayllace et al. (AAAI 2019) ✔ ✔ ✔

Wayllace et al. (ECAI 2020) ✔ ✔ ✔ ✔

Common Assumption: 
Uses a worst-case measure (across all possible agent 

behaviors) for the difficulty of the goal recognition problem

The worst-case measure often does not reflect 

the expected agent behavior, especially if agent is human

Also computationally expensive and does not scale well
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Literature Suboptimal 
Agent

Stochastic 
Actions

Partially 
Observable 
Environment

Action 
Removal

Sensor 
Refinement

Action 
Conditioning

Keren et al. (ICAPS 2014) ✔

Keren et al. (AAAI 2015) ✔ ✔

Son et al. (AAAI 2016) ✔

Keren et al. (AAAI 2016) ✔ ✔ ✔ ✔

Keren et al. (IJCAI 2016) ✔ ✔ ✔

Wayllace et al. (IJCAI 2016) ✔ ✔

Ang et al. (IJCAI 2017) ✔

Wayllace et al. (IJCAI 2017) ✔ ✔

Keren et al. (ICAPS 2018) ✔ ✔ ✔ ✔ ✔

Keren et al. (JAIR 2018) ✔ ✔ ✔ ✔ ✔

Wayllace et al. (AAAI 2019) ✔ ✔ ✔

Wayllace et al. (ECAI 2020) ✔ ✔ ✔ ✔

Common Assumption: 
Uses a worst-case measure (across all possible agent 

behaviors) for the difficulty of the goal recognition problem

The worst-case measure often does not reflect 

the expected agent behavior, especially if agent is human

Also computationally expensive and does not scale well

Data-Driven GRD:  
Use a data-driven approach to learn a predictor for the 
expected difficulty of the problem for a variety of agent 

behaviors, including human behavior
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• Predictive Module: 
• Curate a training dataset: Tuplets of environment, behavior, and wcd

• Behaviors: Optimal, bounded suboptimal, human


• Collected human behavioral data for navigating to a goal in a grid

• Trained a multilayer perceptron model to predict the next action


• CNN-based model that takes as input an environment and outputs a 
predicted wad

Data-Driven GRD

52

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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• Predictive Module: 
• Curate a training dataset: Tuplets of environment, behavior, and wcd

• Behaviors: Optimal, bounded suboptimal, human

• CNN-based model that takes as input an environment and outputs a 

predicted wcd


• Design Module: 
• Transforms the GRD problem into an unconstrained optimization 

problem using Lagrangian relaxation: 
 

                          
• : wcd of environment  with behavioral model 

• : cost of changing current environment  to environment 

• : cost budget

L = wcd(w′ , h) + λ(c(w, w′ ) − B)
wcd(w′ , h) w′ h
c(w, w′ ) w w′ 

B

Data-Driven GRD

53

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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• Predictive Module: 
• Curate a training dataset: Tuplets of environment, behavior, and wcd

• Behaviors: Optimal, bounded suboptimal, human

• CNN-based model that takes as input an environment and outputs a 

predicted wcd


• Design Module: 
• Transforms the GRD problem into an unconstrained optimization 

problem using Lagrangian relaxation: 
 

                          

• Perform gradient descent on the relaxed Lagrangian; at each step:

• obtain a vector of possible changes and their magnitude

• select element with the highest gradient value and make the corresponding 

change

L = wcd(w′ , h) + λ(c(w, w′ ) − B)

Data-Driven GRD

54

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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• User Study: Accuracy of human goal inference:  
• Does modifying the environment to reduce predicted wcd result in 

environments that are easier for humans to infer goals?


• Generated 30 initial environments

• Modified them using:

• Greedy: Using predicted wcd from our predictive module

• Proposed (opt-bhvr): Using our design module, but assuming 

optimal agent behavior

• Proposed (data-driven): Using our predictive and design modules


• Asked users to guess the goal of the observed agent

Data-Driven GRD

55

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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• Data-driven approach allows users to more accurately guess the goal of 
the observed agent

Data-Driven GRD

56

Kasumba, Yu, Ho, Keren, and Yeoh: Data-Driven Goal Recognition Design for General Behavioral Agents. arXiv 2024
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• Goal Recognition: 
• Seek to identify the goal G of an agent based on its observations O


• Goal Recognition Design (GRD): 
• Seek to modify/design the underlying environment to improve goal 

recognition

• Orthogonal to goal recognition; advances made will complement 

advances in goal recognition


• Partially-Observable Stochastic GRD: 
• Generalizes GRD to partially-observable environments and stochastic 

action outcomes


• Data-Driven GRD: 
• Uses ML to account for human behaviors in GRD

Conclusions

57
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SPOT Survey Time [15min]

(I'll leave the room for 15 minutes) 

Use this link to fill in the SPOT survey: 

https://p20.courseval.net/etw/ets/et.asp?
nxappid=UA2&nxmid=start

https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start

