Game Theory for Single Interactions

CMPUT 261: Introduction to Artificial Intelligence

S&LB §3.0-3.3.2, 3.4.1

Lecture Overview

- 1. Logistics & SPOT
- 2. Recap
- 3. Game Theory
- 4. Solution Concepts
- 5. Mixed Strategies
- 6. Minimax Strategies

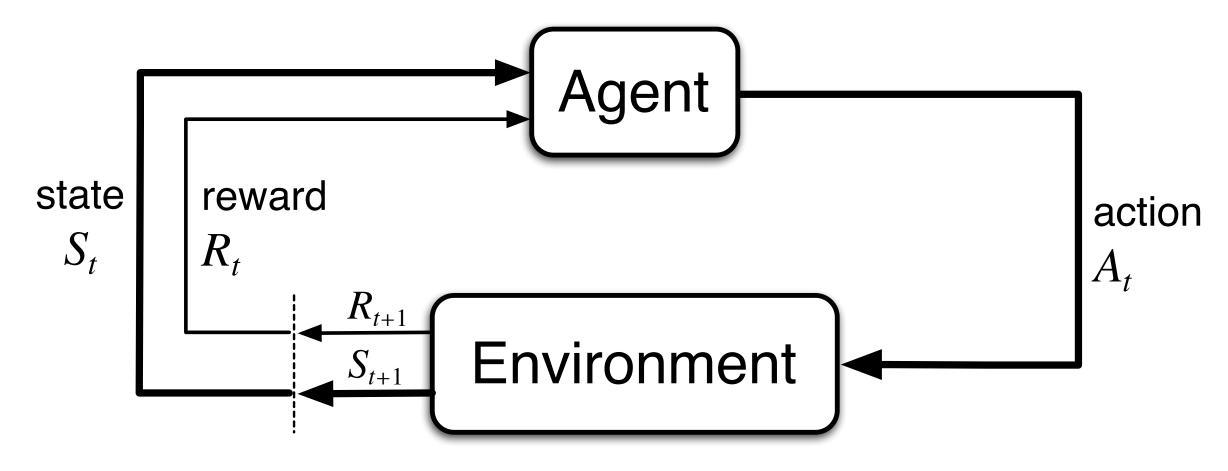
After this lecture, you should be able to:

- define best response and Nash equilibrium
- define Pareto dominance and Pareto optimality
- identify the pure strategies in a normal form game
- identify a pure strategy Nash equilibrium in a normal form game
- identify the Pareto dominant outcomes in a normal form game
- explain the difference between pure strategy and mixed strategy Nash equilibria
- define a maxmin strategy
- define a zero-sum game
- state the Minimax Theorem and explain its implications

Logistics

- Assignment #3 marks are available on Canvas
- Assignment #4 is due December 4 (TONIGHT) at 11:59pm
 - Late submissions for 20% deduction
 - No EAs or remarking for empty submissions
- **SPOT** (formerly USRI) surveys are <u>now available</u>
 - Available until December 10 at 11:59pm
 - You should have gotten an email
 - Please do fill one out, URL here: https://p20.courseval.net/etw/ets/et.asp?nxappid=UA2&nxmid=start
- Final exam is Tuesday, December 16
 - in ETLC E1-013 (NOT this lecture hall)
 - At 1:00pm (NOT the same time as lecture)
 - Format: Like midterm, but longer
 - Material: EVERYTHING (but more focus on post-midterm material)

Recap: Reinforcement Learning



- Reinforcement learning: Single agents learn from interactions with an environment
- **Prediction:** Learn the value $v_{\pi}(s)$ of executing **policy** π from a given **state** s, or the value $q_{\pi}(s,a)$ of taking **action** a from state s and then executing π
- Control: Learn an optimal policy
 - Action-value methods: Policy improvement based on action value estimates
 - Policy gradient methods: Search parameterized policies directly

Game Theory

- Game theory is the mathematical study of interaction between multiple rational, self-interested agents
- Rational agents' preferences can be represented as maximizing the expected value of a scalar utility function
- Self-interested: Agents pursue only their own preferences
 - Not the same as "agents are psychopaths"! Their preferences may include the well-being of other agents.
 - Rather, the agents are **autonomous**: they decide on their own priorities independently.

How Is This AI?

- We will not be talking about algorithms for constructing agents today
- All of our material up until today has assumed one agent interacting with an environment
- As we'll see today, things are very different when the "environment" contains
 other agents with distinct preferences and goals
- Reasoning about incentives is crucial when multiple agents interact
- Game theory is a principled way to reason about incentives

Fun Game: Prisoner's Dilemma

Cooperate Defect

Cooperate -1,-1 -5,0

Defect 0,-5 -3,-3

Two suspects are being questioned separately by the police.

- If they both remain silent (cooperate -- i.e., with each other), then they will both be sentenced to
 1 year on a lesser charge
- If they both implicate each other (defect), then they will both receive a reduced sentence of 3 years
- If one defects and the other cooperates, the defector is given immunity (**0** years) and the cooperator serves a full sentence of **5** years.

Play the game with someone near you. Then find a new partner and play again.

Normal Form Games

The Prisoner's Dilemma is an example of a **normal form game**. Agents make a single decision **simultaneously**, and then receive a payoff depending on the profile of actions.

Definition: Finite, *n*-person normal form game

- N is a set of n players, indexed by i
- $A = A_1 \times A_2 \times \cdots \times A_n$ is the set of action profiles
 - A_i is the action set for player i
- $u = (u_1, u_2, ..., u_n)$ is a utility function for each player
 - $u_i:A\to\mathbb{R}$

Utility Theory

- The expected value of a scalar utility function $u_i:A\to\mathbb{R}$ is sufficient to represent "rational preferences" [von Neumann & Morgenstern, 1944]
 - Rational preferences are those that satisfy completeness, transitivity, substitutability, decomposability, monotonicity, and continuity
 - Action profile determines the outcome in a normal form game
- Affine invariance: For a given set of preferences, u_i is not unique
 - $u_i'(a) = cu_i(a) + b$ represents the same preferences $\forall c > 0, \ b \in \mathbb{R}$ (why?)

Games of Pure Cooperation and Pure Competition

• In a zero-sum game, players have exactly opposed interests:

$$u_1(a) = -u_2(a) \text{ for all } a \in A \text{ (*)}$$

- * There must be precisely two players
- In a game of pure cooperation, players have exactly the same interests: $u_i(a) = u_i(a)$ for all $a \in A$ and $i, j \in N$

	Heads	Tails		Left	Right	
Heads	1,-1	-1,1	Left	1	-1	
Tails	-1,1	1,-1	Right	-1	1	
Matching Pennies			Which side of the road should you drive on?			

General Game: Battle of the Sexes

The most interesting games are simultaneously both cooperative and competitive!

Dollat Coook

	Ballet	Soccer	
Ballet	2, 1	0, 0	
Soccer	0, 0	1, 2	

Play against someone near you.

Optimal Decisions in Games

- In single-agent environments, the key notion is
 optimal decision: a decision that maximizes the agent's expected utility
- Question: What is the optimal strategy in a multiagent setting?
 - In a multiagent setting, the notion of unconditionally optimal strategy is incoherent
 - The best strategy depends on the strategies of others

Solution Concepts

- From the viewpoint of an **outside observer**, can some outcomes of a game be labelled as **better** than others?
 - We have no way of saying one agent's interests are more important than another's
 - We can't even compare the agents' utilities to each other, because of affine invariance! We don't know what "units" the payoffs are being expressed in.
- Game theorists identify certain subsets of outcomes that are interesting in one sense or another. These are called solution concepts.

Pareto Optimality

- Sometimes, some outcome o^1 is at least as good for any agent as outcome o^2 , and there is some agent who strictly prefers o^1 to o^2 .
 - In this case, o^1 seems defensibly better than o^2

Definition: o^1 Pareto dominates o^2 in this case

Definition: An outcome o^* is **Pareto optimal** if no other outcome Pareto dominates it.

Does
$$\begin{bmatrix} 9 \\ 8 \\ 7 \end{bmatrix}$$
 Pareto-dominate $\begin{bmatrix} 1 \\ 1 \\ 9 \end{bmatrix}$?

Out of
$$\left\{\begin{bmatrix}9\\8\\7\end{bmatrix},\begin{bmatrix}8\\4\end{bmatrix},\begin{bmatrix}1\\4\end{bmatrix},\begin{bmatrix}1\\3\end{bmatrix},\begin{bmatrix}1\\1\\9\end{bmatrix}\right\}$$
 which outcomes are Pareto-optimal?

Questions:

- Can a game have more than one Pareto-optimal outcome?
- Does every game have at least one Pareto-optimal outcome?

Best Response

- Which actions are better from an individual agent's viewpoint?
- That depends on what the other agents are doing!

Notation:

$$a_{-i} \doteq (a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_n)$$

$$a = (a_i, a_{-i})$$

Definition: Pure Best Besponse

$$BR_i(a_{-i}) \doteq \{a_i^* \in A_i \mid u_i(a^*, a_{-i}) \ge u_i(a_i, a_{-i}) \ \forall a_i \in A_i \}$$

Nash Equilibrium

- Best response is not, in itself, a solution concept
 - In general, agents won't know what the other agents will do
 - But we can use it to define a solution concept
- A Nash equilibrium is a stable outcome: one where no agent regrets their actions

Definition:

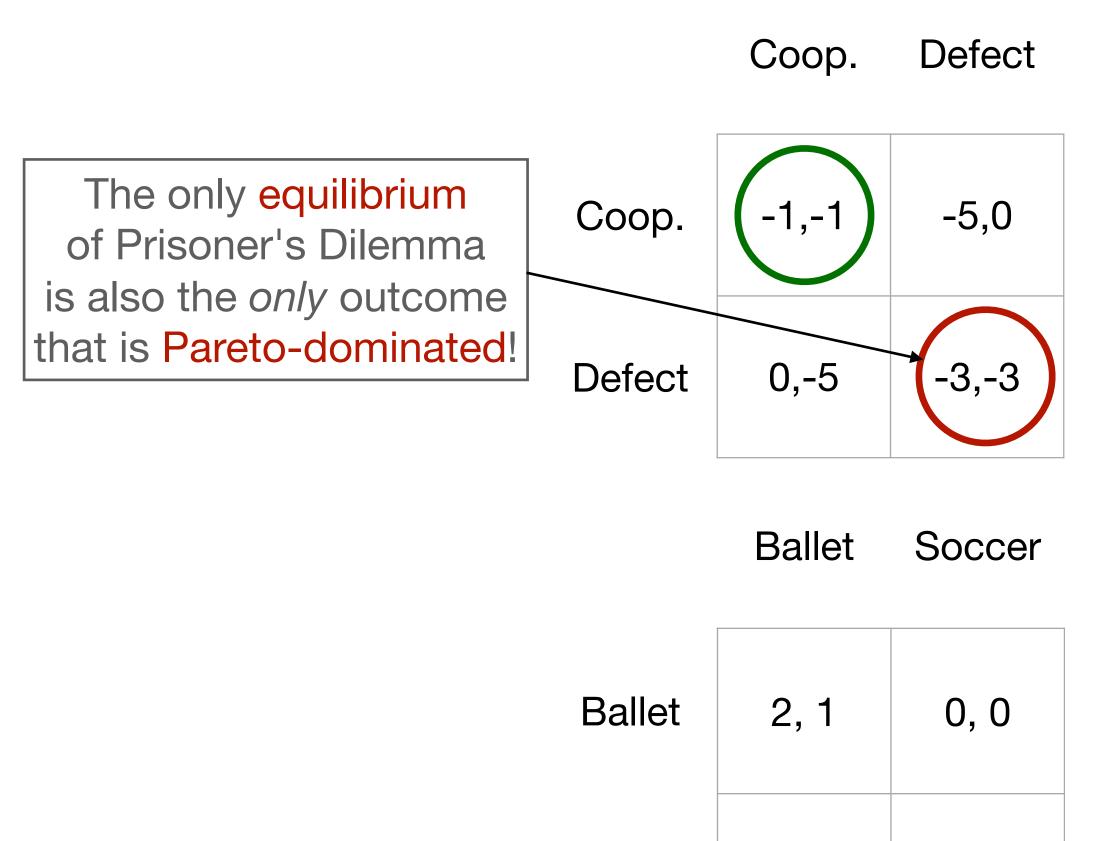
An action profile $a \in A$ is a (pure strategy) Nash equilibrium iff

$$\forall i \in N, \ a_i \in BR_i(a_{-i})$$

Questions:

- Can a game have more than one pure strategy Nash equilibrium?
- Does every game have at least one pure strategy
 Nash equilibrium?

Nash Equilibria of Examples



Soccer

0, 0

	Left	Right	
Left	1	-1	
Right	-1	1	
	Heads	Tails	
Heads	1,-1	-1,1	
Tails	-1,1	1,-1	

Mixed Strategies

Definitions:

- A strategy s_i for agent i is any probability distribution over the set A_i , where each action a_i is played with probability $s_i(a_i)$.
 - Pure strategy: only a single action is played
 - Mixed strategy: randomize over multiple actions
- Set of i's strategies: $S_i \doteq \Delta(A_i)$ over elements of X
- Set of strategy profiles: $S = S_1 \times S_2 \times \cdots \times S_n$
- Utility of a mixed strategy profile:

$$u_i(s) \doteq \sum_{a \in A} u_i(a) \prod_{j \in N} s_j(a_j)$$

Best Response and Nash Equilibrium

Definition:

The set of i's **best responses** to a strategy profile $s \in S$ is

$$BR_i(s_{-i}) \doteq \{s_i^* \in S_i \mid u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_i \in S_i \}$$

Definition:

A strategy profile $s \in S$ is a Nash equilibrium iff

$$\forall i \in N, \quad s_i \in BR_i(s_{-i})$$

• When at least one s_i is mixed, s is a mixed strategy Nash equilibrium

Nash's Theorem

Theorem: [Nash 1951]

Every game with a finite number of players and action profiles has at least one Nash equilibrium.

• Pure strategy equilibria are not guaranteed to exist

Interpreting Mixed Strategy Nash Equilibrium

What does it even mean to say that agents are playing a mixed strategy Nash equilibrium?

- They truly are sampling a distribution in their heads, perhaps to confuse their opponents (e.g., soccer, other zero-sum games)
- The distribution represents the other agents' uncertainty about what the agent will do
- The distribution is the empirical frequency of actions in repeated play
- The distribution is the frequency of a pure strategy in a **population** of pure strategies (i.e., every individual plays a pure strategy)

Maxmin Strategies

What is the maximum expected utility that an agent can guarantee themselves?

Definition:

The maxmin value of a game for i is the value \overline{v}_i highest value that i can guarantee they will receive:

$$\overline{v}_i = \max_{s_i \in S_i} \left[\min_{s_{-i} \in S_i} u_i(s_i, s_{-i}) \right]$$

Definition:

A maxmin strategy for i is a strategy \bar{s}_i that maximizes i's worst-case payoff:

$$\overline{s}_i = \arg\max_{s_i \in S_i} \left[\min_{s_{-i} \in S_i} u_i(s_i, s_{-i}) \right]$$

Question:

- Does a maxmin strategy always exist?
- 2. Is an agent's maxmin strategy always unique?
- 3. Why would an agent want to play a maxmin strategy?

(Two-player) Minmax Strategies

What is the minimum expected utility that an agent can **guarantee** the other won't exceed?

Definition:

The minmax value of a game for i is the lowest value \underline{v}_i that -i can guarantee i will not exceed:

$$\underline{v}_i = \min_{s_{-i} \in S_i} \left[\max_{s_i \in S_i} u_i(s_i, s_{-i}) \right]$$

Definition:

A minmax strategy against i is a strategy \underline{s}_{-i} that minimizes i's best-case payoff:

$$\underline{s}_{-i} = \arg\min_{s_{-i} \in S_i} \left[\max_{s_i \in S_i} u_i(s_i, s_{-i}) \right]$$

Question:

- Does a minmax strategy always exist?
- 2. Is an agent's minmax strategy always unique?
- 3. Why would an agent want to play a minmax strategy?

Minimax Theorem

Theorem: [von Neumann, 1928]

In any Nash equilibrium s^* of any finite, two-player, zero-sum game, each player receives an expected utility v_i equal to both their maxmin and their minmax value.

Minimax Theorem Implications

In any zero-sum game:

- 1. Each player's maxmin value is equal to their minmax value (i.e., $\overline{v}_i = \underline{v}_i$). We call this the **value of the game**.
- 2. For both players, the maxmin strategies and the Nash equilibrium strategies are the **same sets**.
- 3. Any maxmin strategy profile (a profile in which both agents are playing maxmin strategies) is a Nash equilibrium. Therefore, each player gets the same payoff in every Nash equilibrium (namely, their value for the game).

Summary

- Game theory studies the interactions of rational agents
 - Canonical representation is the normal form game
- Game theory studies solution concepts rather than optimal behaviour
 - "Optimal behaviour" is not clear-cut in multiagent settings
 - Pareto optimal: no agent can be made better off without making some other agent worse off
 - Nash equilibrium: no agent regrets their strategy given the choice of the other agents' strategies
 - Maxmin strategies maximize an agent's worst-case payoff
- In zero-sum games, maxmin strategies and Nash equilibrium are the same thing
 - It is always safe to play an equilibrium strategy in a zero-sum game