Temporal Difference Learning

CMPUT 261: Introduction to Artificial Intelligence

S&B §6.0-6.2, §6.4-6.5

Lecture Overview

- 1. Recap & Logistics
- 2. TD Prediction
- 3. On-Policy TD Control (Sarsa)
- 4. Off-Policy TD Control (Q-Learning)
- 5. Expected Sarsa

After this lecture, you should be able to:

- trace an execution of the TD(0) algorithm
- trace an execution of the Q-learning algorithm
- trace an execution of the Sarsa algorithm
- define bootstrapping
- explain why bootstrapping is useful
- trace an execution of the Expected Sarsa algorithm
- describe the advantages of Expected Sarsa over Sarsa

Logistics

- Assignment #4 is due April 11 at 11:59pm
 - Late submissions for 20% deduction until April 15 at 11:59pm
- SPOT (formerly USRI) surveys are now available
 - Available until April 14

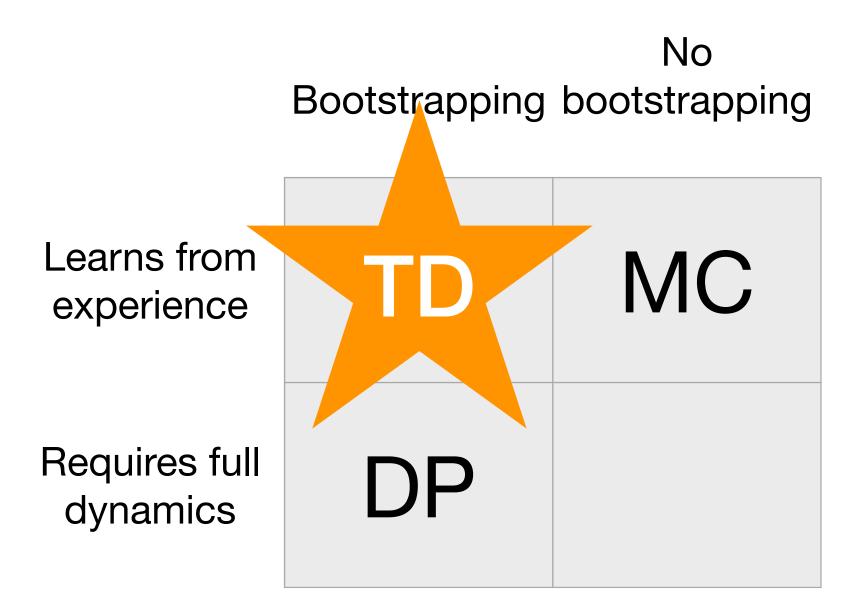
Previous Lecture Summary

- Monte Carlo estimation estimates values by averaging returns over sample episodes
 - Does not require access to full model of dynamics
 - Does require access to an entire episode for each sample
- Estimating action values requires either exploring starts or a soft policy (e.g., ϵ -greedy)
- Off-policy learning is the estimation of value functions for a target policy based on episodes generated by a different behaviour policy
 - Importance sampling is one way to perform off-policy learning
 - Weighted importance sampling has lower variance than ordinary importance sampling
- Off-policy control is learning the optimal policy (target policy) using episodes from a behaviour policy

Learning from Experience

- Suppose we are playing a blackjack-like game in person, but we don't know the rules.
 - We know the actions we can take, we can see the cards, and we get told when we win or lose
- Question: Could we compute an optimal policy using dynamic programming in this scenario?
- Question: Could we compute an optimal policy using Monte Carlo?
 - What would be the pros and cons of running Monte Carlo?

Bootstrapping



- Dynamic programming bootstraps: Each iteration's estimates are based partly on estimates from previous iterations
- Each Monte Carlo estimate is based only on actual returns

Updates

Dynamic Programming:
$$V(S_t) \leftarrow \sum_{a} \pi(a \mid S_t) \sum_{s',r} p(s',r \mid S_t,a) [r + \gamma V(s')]$$

Monte Carlo:
$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

TD(0):
$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] \quad \text{Monte Carlo: Approximate because of } \mathbb{E}$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s] \text{. Dynamic programming: }$$
 Approximate because v_{π} not known

TD(0): Approximate because of \mathbb{E} and v_{π} not known

TD(0) Algorithm

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
```

Algorithm parameter: step size $\alpha \in (0,1]$

Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:

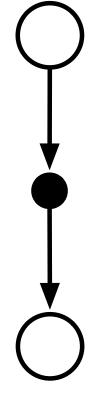
 $A \leftarrow \text{action given by } \pi \text{ for } S$

Take action A, observe R, S'

$$V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S) \right]$$

$$S \leftarrow S'$$

until S is terminal



Question: What information does this algorithm use?

TD for Control

- We can plug TD prediction into the generalized policy iteration framework
- Monte Carlo control loop:
 - 1. Generate an episode using estimated π
 - 2. Update estimates of Q and π
- On-policy TD control loop:
 - 1. Take an **action** according to π
 - 2. Update estimates of Q and π

On-Policy TD Control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Loop for each step of episode:
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
      Q(S,A) \leftarrow Q(S,A) + \alpha \left[ R + \gamma Q(S',A') - Q(S,A) \right]
       S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Question: What information does this algorithm use?

Question: Will this estimate the Q-values of the optimal policy?

Actual Q-Values vs. Optimal Q-Values

- Just as with on-policy Monte Carlo control, Sarsa does not converge to the optimal policy, because it always chooses an *ϵ*-greedy action
 - And the estimated Q-values are with respect to the actual actions, which are *ϵ*-greedy
- **Question:** Why is it necessary to choose ϵ -greedy actions?
- What if we acted ϵ -greedy, but learned the Q-values for the optimal policy?

Off-Policy TD Control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s,a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

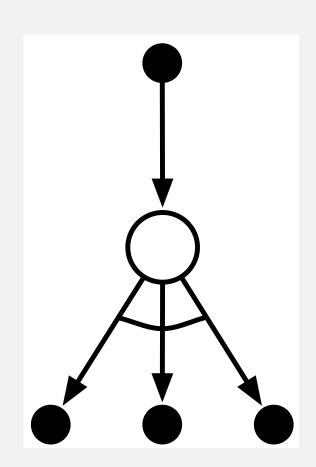
Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

$$S \leftarrow S'$$

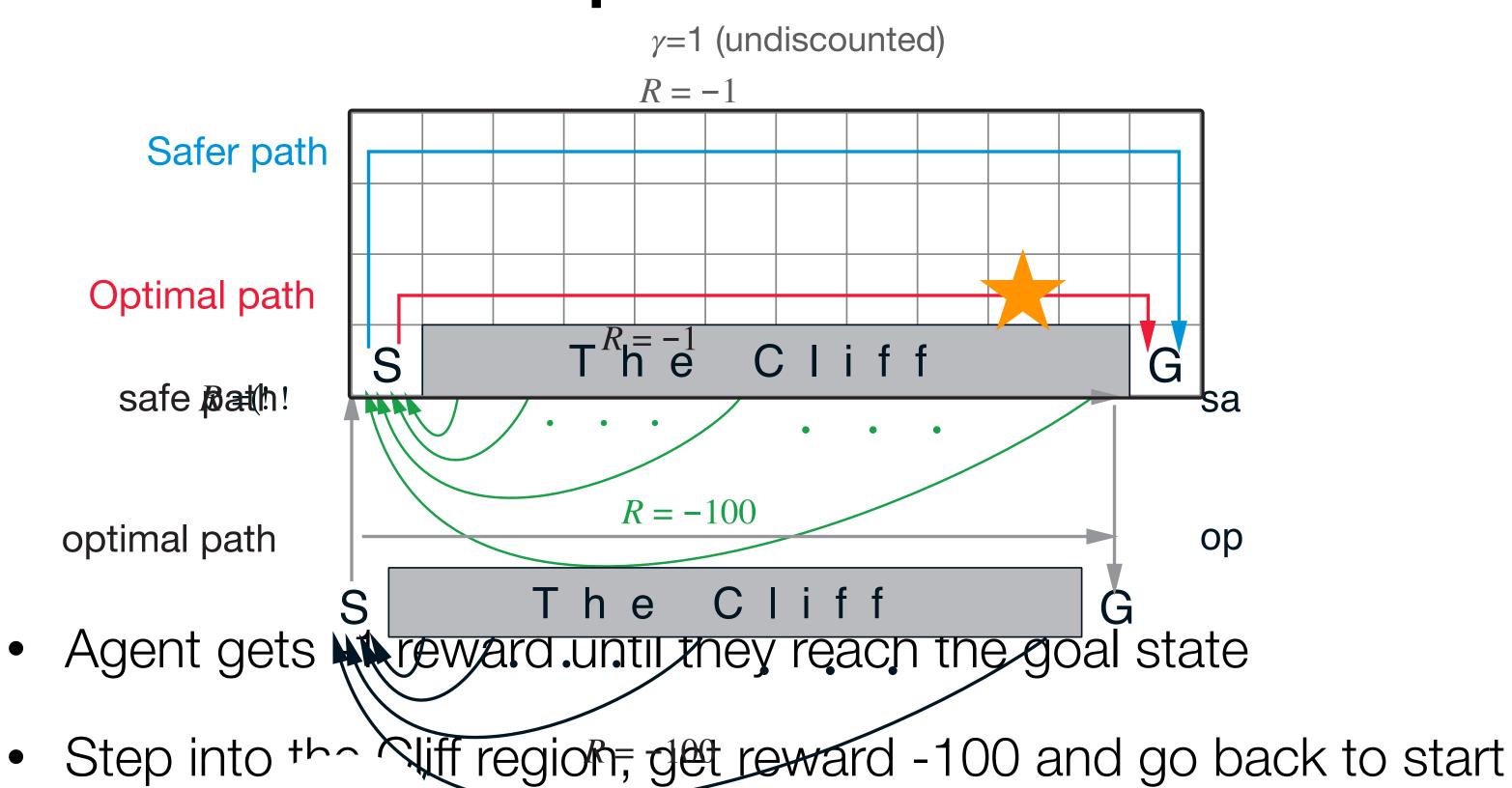
until S is terminal



Question: What information does this algorithm use?

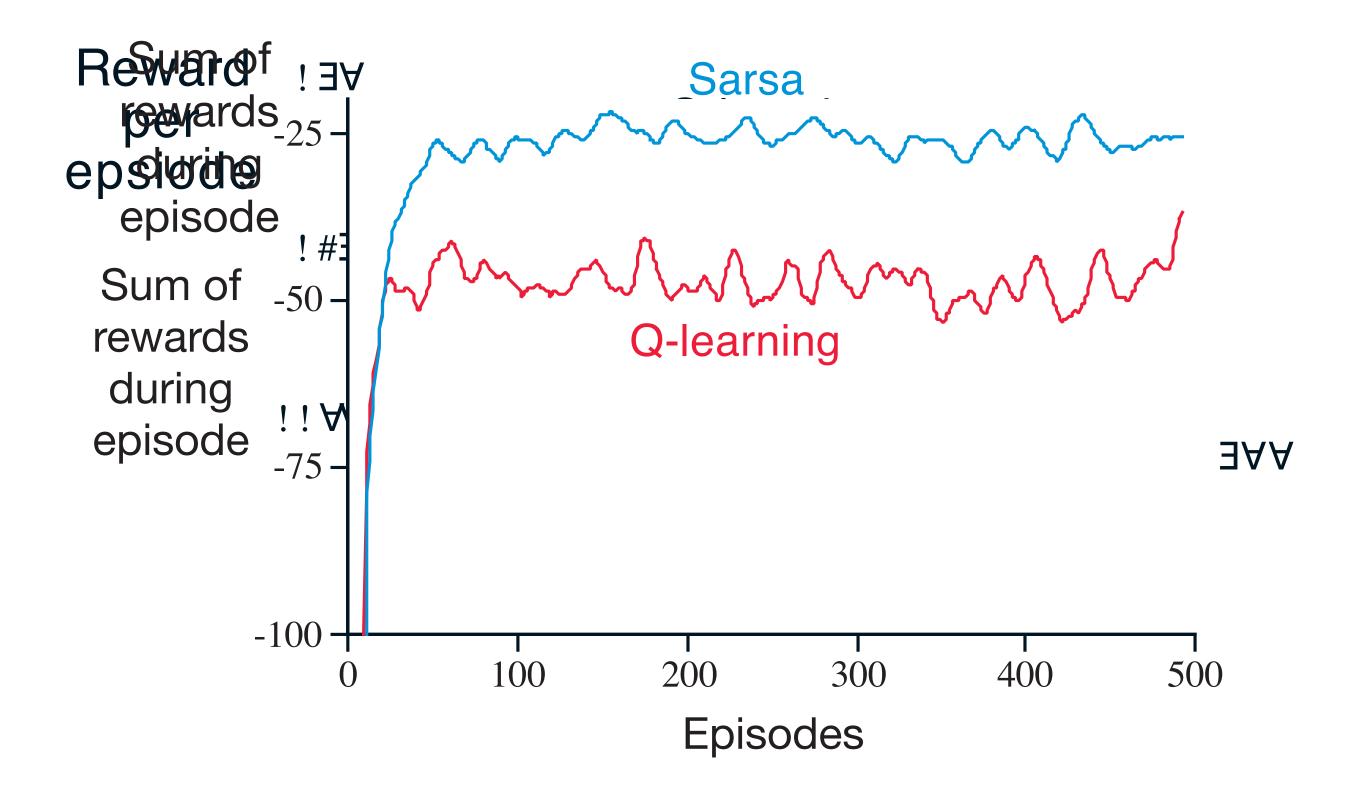
Question: Why aren't we estimating the policy π explicitly?

Example: The Cliff



- Question: How will Q-Learning estimate the value of this state?
- Question: How will Sarsa estimate the value of this state?

Performance on The Cliff



Q-Learning estimates optimal policy, but Sarsa consistently outperforms Q-Learning. (why?)

Sarsa Uses Sampled Actions

• Sarsa updates the value of $Q(S_t, A_t)$ based on the **estimated value** of the next action that will **actually be taken** in the next state:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

• *BUT:*

- estimate of $v_{\pi}(S_{t+1}) = \mathbb{E}_{\pi} \left[Q(S_{t+1}, A_{t+1}) \right]$
- We know the distribution of A_{t+1} (what is it?)
- The estimated value of that action doesn't depend on what happens after it is taken (why?)
- Why not estimate $\mathbb{E}_{\pi}\left[Q(S_{t+1},A_{t+1})\right]$ by taking **expectation** over A_{t+1} ?

Expected Sarsa

Sarsa uses a single sample from $\pi(\cdot \mid S_t)$ to estimate $v_{\pi}(S_{t+1})$:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

Expected Sarsa takes expectation over every possible action:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}_{\mathbf{a} \sim \pi(\cdot | S_{t+1})} \left[Q(S_{t+1}, \mathbf{a}) \right] - Q(S_t, A_t) \right]$$

$$= Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum_{\mathbf{a} \in \mathcal{A}(S_{t+1})} \left[\pi(a \mid S_{t+1}) Q(S_{t+1}, \mathbf{a}) \right] - Q(S_t, A_t) \right]$$

Expected Sarsa

Expected Sarsa (on-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s,a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

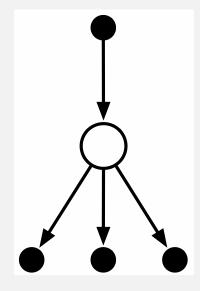
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

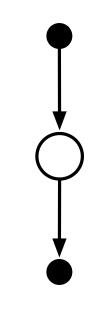
$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \left(\sum_{a} \pi(a \mid S') \right) \right) - Q(S')$$

until S is terminal

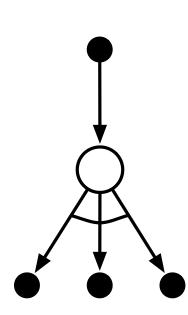


Information Usage

• **Sarsa** uses the actual reward R_t of the actual action A_t taken from an actual state S_t , and the estimated value of the **actual action** A_{t+1} to be taken in the actual next state S_{t+1}

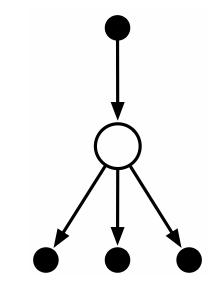


• Q-Learning uses the actual reward R_t of the actual action A_t taken from an actual state S_t , and the value of the highest-estimated-value action in the actual next state S_{t+1}

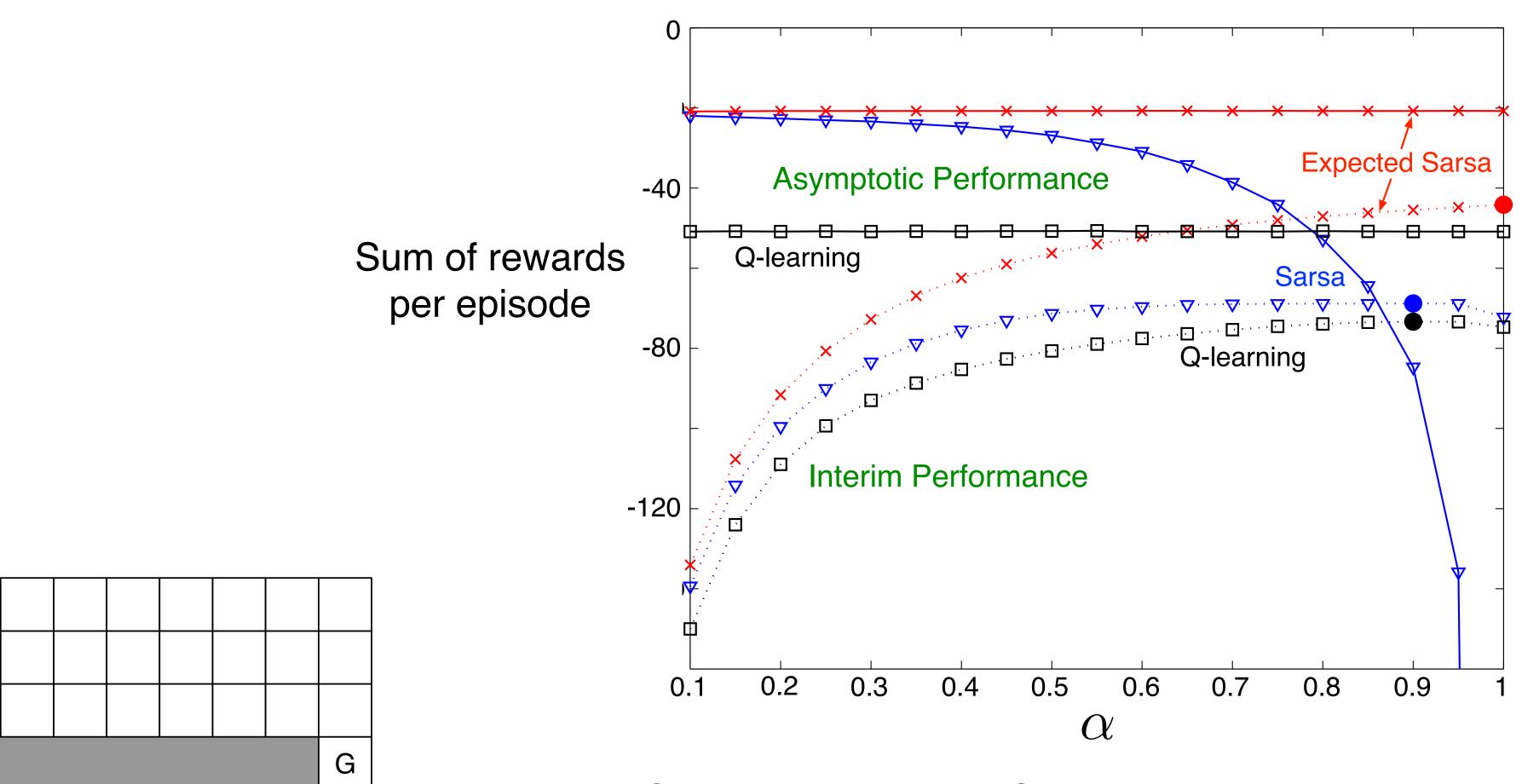


• Expected Sarsa uses the actual reward R_t of total taken from an actual state S_t , and the expected next action A_{t+1} to be taken in the actual next set t+1

Jal action A_t lated value of



Performance on The Cliff, revisited



- ullet For small enough lpha, Sarsa and Expected Sarsa have same asymptotic performance
- For larger α , Expected Sarsa has increasingly high interim performance, whereas Sarsa has increasingly poor interim performance (**why?**)

Summary

- Temporal Difference Learning bootstraps and learns from experience
 - Dynamic programming bootstraps, but doesn't learn from experience (requires full dynamics)
 - Monte Carlo learns from experience, but doesn't bootstrap
- Prediction: **TD(0)** algorithm
- Sarsa estimates action-values of actual *ϵ*-greedy policy
 - **Expected Sarsa** estimates action-values of ϵ -greedy policy
- Q-Learning estimates action-values of optimal policy while executing an
 €-greedy policy