Optimality and Dynamic Programming

CMPUT 261: Introduction to Artificial Intelligence

S&B §3.6, §4.0-4.4

Lecture Outline

- 1. Recap & Logistics
- 2. Policy Evaluation
- 3. Optimality
- 4. Policy Improvement

After this lecture, you should be able to:

- justify why one policy is weakly better than another
- trace an execution of iterative policy evaluation
- state the Policy Improvement Theorem and describe why it is important
- trace an execution of the Value Iteration algorithm

Logistics

- Assignment #3 is due today at 11:59pm
 - late submissions accepted until Friday at 11:59pm
- Assignment #4 will be released no later than Thursday
 - Due Thursday Dec 7 at 11:59pm
- Reminder: TAs are available during labs to help

Recap: Markov Decision Process

At each time t = 1, 2, 3, ...

- 1. Agent receives input denoting current state S_t
- 2. Agent chooses action A_t
- 3. Next time step, agent receives reward R_{t+1} and new state S_{t+1} , chosen according to a distribution $p(s', r \mid s, a)$

This interaction between agent and environment produces a trajectory:

$$S_0, A_0, R_1, S_1, A_1, R_2, S_2, A_2, R_3, \dots$$

Recap: Value Functions

State-value function

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s \right]$$

Action-value function

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

$$= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s]$$

$$= \sum_{a} \pi(a | s) \sum_{s'} \sum_{r} p(s', r | s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s']]$$

$$= \sum_{a} \pi(a | s) \sum_{s', r} p(s', r | s, a) [r + \gamma v_{\pi}(s')]$$

- v_{π} is the unique solution to π 's (state-value) Bellman equation
- There is also a Bellman equation for π 's action-value function

Recap: GridWorld Example

Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy $\pi(a \mid s) = 0.25$

GridWorld with Bounds Checking

What about a policy where we never try to go over an edge?

Reward dynamics

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

State-value function v_{π} for random policy $\pi(a \mid s) = 0.25$

6.7	10.8	6.4	6.7	4.3
4.2	4.7	3.7	3.4	2.8
2.4	2.4	2.1	1.9	1.7
1.5	1.4	1.3	1.2	1.1
1.1	1.0	0.9	0.9	0.9

State-value function v_{π^B} for bounded random policy π^B

Policy Evaluation

Question: How can we compute v_{π} ?

- 1. We know that v_{π} is the unique solution to the Bellman equations, so we could just solve them (treating $v_{\pi}(s_1), \ldots, v_{\pi}(s_{|\mathcal{S}|})$ as variables)
 - but that is tedious and annoying and slow (it's a system of $|\mathcal{S}|$ linear equations in $|\mathcal{S}|$ unknowns)
 - Also requires a complete model of the dynamics

2. Iterative policy evaluation

Takes advantage of the recursive formulation

Iterative policy evaluation uses the Bellman equation as an update rule:

$$v_{k+1}(s) \doteq \mathbb{E}_{\pi}[R_{t+1} + \gamma v_k(S_{t+1}) | S_t = s]$$

$$= \sum_{a} \pi(a | s) \sum_{s',r} p(s', r | s, a) [r + \gamma v_k(s')]$$

- v_{π} is a **fixed point** of this update, by definition
- Furthermore, starting from an arbitrary v_0 , the sequence $\{v_k\}$ will converge to v_π as $k\to\infty$
 - (nontrivial to prove)

In-Place Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Input \pi, the policy to be evaluated Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop:  \Delta \leftarrow 0  Loop for each s \in \mathbb{S}:  v \leftarrow V(s)   V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]   \Delta \leftarrow \max(\Delta,|v-V(s)|)  until \Delta < \theta
```

- The updates are in-place: we use new values for V(s) immediately instead of waiting for the current sweep to complete (why?)
- These are expected updates: Based on a weighted average (expectation)
 of all possible next states (instead of what?)

0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

$$V(s_{1,1}) = \pi(\mathsf{n})[-1 + \gamma V(s_{1,1})] + \pi(\mathsf{w})[-1 + \gamma V(s_{1,1})] + \pi(\mathsf{s})[0 + \gamma V(s_{1,2})] + \pi(\mathsf{e})[0 + \gamma V(s_{2,1})]$$
$$= 0.25(-1) + 0.25(-1) + 0.25(0) + 0.25(0)$$

-0.5	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

$V(s_{1,2}) = \pi(n)[10 + \gamma \mathbf{V}(\mathbf{s}_{2,5})] + \pi(w)[10 + \gamma \mathbf{V}(\mathbf{s}_{2,5})] +$
$\pi(s)[10 + \gamma V(s_{2,5})] + \pi(e)[10 + \gamma V(s_{2,5})]$
= 0.25[10 + 0.9(0)] + 0.25[10 + 0.9(0)] +
0.25[10 + 0.9(0)] + 0.25[10 + 0.9(0)]

-0.5	10	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

$$V(s_{3,1}) = \pi(\mathsf{n})[-1 + \gamma V(s_{3,1})] + \pi(\mathsf{w})[-1 + \gamma \mathbf{V}(\mathbf{s}_{2,1})] + \pi(\mathsf{s})[0 + \gamma V(s_{3,2})] + \pi(\mathsf{e})[0 + \gamma V(s_{4,1})]$$

$$= 0.25[-1 + 0.9(0)] + 0.25[0 + 0.9(10)] + 0.25[0 + 0.9(0)]$$

-0.5	10	2	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0

Iterative Policy Evaluation in GridWorld

-0.5	10	2	5	0.6
-0.3	2.1	0.9	1.3	0.2
-0.3	0.4	0.3	0.4	-0.1
-0.3	0.0	0.0	0.1	-0.2
-0.5	-0.3	-0.3	-0.3	-0.6

Iterative Policy Evaluation in GridWorld

1.4	9.7	3.7	5.3	1.0
0.4	2.5	1.8	1.7	0.4
-0.2	0.6	0.6	0.5	-0.1
-0.5	0.0	0.0	0.0	-0.5
-1.0	-0.6	-0.5	-0.5	-1.0

Iterative Policy Evaluation in GridWorld

3.4	8.9	4.5	5.3	1.5
1.6	3.0	2.3	1.9	0.6
0.1	0.8	0.7	0.4	-0.4
-1.0	-0.4	-0.3	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Optimality

- Question: What is an optimal policy?
- A policy π is (weakly) better than a policy π' if it is better for all $s \in \mathcal{S}$:

$$\pi \geq \pi' \iff \nu_{\pi}(s) \geq \nu_{\pi'}(s) \quad \forall s \in \mathcal{S}.$$

- An optimal policy π_* is weakly better than every other policy
 - Question: Is an optimal policy guaranteed to exist for a given MDP?
- All optimal policies share the same state-value function: (why?)

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

Also the same action-value function:

$$q_*(s, a) \doteq \max_{\pi} q_{\pi}(s, a)$$

Bellman Optimality Equations

- v_* must satisfy the Bellman equation too
- In fact, it can be written in a special, **policy-free** way because we know that every state value is **maximized** by π_* :

$$v_*(s) = \max_{a} q_{\pi_*}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_*}[G_t \mid S_t = s, A_t = a]$$

$$= \max_{a} \mathbb{E}_{\pi_*}[R_{t+1} + \gamma G_{t+1} \mid S_t = s, A_t = a]$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s', r \mid s, a)[r + \gamma v_*(s')]$$

Bellman Optimality Equations

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

$$= \max_{a} \sum_{s',r} p(s', r | s, a)[r + \gamma v_*(s')]$$

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \middle| S_t = s, A_t = a\right] \xrightarrow{(q_*)} s, a$$

$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*(s', a')\right] \xrightarrow{\max}$$

Optimal GridWorld

Gri	dw	or	lc
	U V V	O I	

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

 U_*

 π_*

Policy Improvement Theorem

Theorem:

Let π and π' be any pair of deterministic policies.

If
$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$$
,

then
$$v_{\pi'}(s) \ge v_{\pi}(s) \quad \forall s \in \mathcal{S}$$
.

If you are never worse off **at any state** by following π' for **one step** and then following π forever after, then following π' forever has a higher expected value **at every state**.

Policy Improvement Theorem Proof

$$\begin{split} v_{\pi}(s) &\leq q_{\pi}(s, \pi'(s)) \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = \pi'(s)] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s] \\ &\leq \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma \mathbb{E}_{\pi}[R_{t+2} + \gamma v_{\pi}(S_{t+2}) \mid S_{t+1}, A_{t+1} = \pi'(S_{t+1})] \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma \mathbb{E}_{\pi}[R_{t+2}] + \gamma^{2} \mathbb{E}_{\pi}[v_{\pi}(S_{t+2})] \mid S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} v_{\pi}(S_{t+2}) \mid S_{t} = s] \\ &\leq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} v_{\pi}(S_{t+3}) \mid S_{t} = s] \\ &\vdots \\ &\leq \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots \mid S_{t} = s] \\ &= v_{\pi}(s) \,. \end{split}$$

Greedy Policy Improvement

Given any policy π , we can construct a new greedy policy π' that is guaranteed to be at least as good:

$$\pi'(s) \doteq \arg\max_{a} q_{\pi}(s, a)$$

$$= \arg\max_{a} \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a]$$

$$= \arg\max_{a} \sum_{s',r} p(s', r | s, a) [r + \gamma v_{\pi}(s')].$$

- If this new policy is not **strictly** better than the old policy, then $v_{\pi}(s) = v_{\pi'}(s)$ for all $s \in \mathcal{S}$ (why?)
- Also means that the new (and old) policies are optimal (why?)

Policy Iteration

$$\pi_0 \xrightarrow{E} v_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} v_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \cdots \xrightarrow{I} \pi_* \xrightarrow{E} v_*$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

This is a lot of iterations! Is it necessary to run to completion?

Value Iteration

Value iteration interleaves the estimation and improvement steps:

$$v_{k+1}(s) \doteq \max_{a} \mathbb{E} \left[R_{t+1} + \gamma v_k(S_{t+1}) \, | \, S_t = s, A_t = a \right]$$
$$= \max_{a} \sum_{s',r} p(s',r \, | \, s,a) \left[r + \gamma v_k(s') \right]$$

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

$$| \Delta \leftarrow 0$$

$$| \text{Loop for each } s \in \mathbb{S}:$$

$$| v \leftarrow V(s)$$

$$| V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$| \Delta \leftarrow \max(\Delta,|v - V(s)|)$$

$$| \text{until } \Delta < \theta$$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Summary

- An optimal policy has higher state value than any other policy at every state
- A policy's state-value function can be computed by iterating an expected update based on the Bellman equation
- Given any policy π , we can compute a greedy improvement π' by choosing highest expected value action based on v_{π}
- Policy iteration: Repeat:

Greedy improvement using v_{π} , then recompute v_{π}

Value iteration: Repeat:

Recompute v_{π} by assuming greedy improvement at every update