Optimality and
Dynamic Programming

CMPUT 261: Introduction to Artificial Intelligence

| ecture Outline

1. Recap & Logistics
Policy Evaluation

Optimality

> W

Policy Improvement

After this lecture, you should be able to:

e justify why one policy Is weakly better than another

* trace an execution of iterative policy evaluation

e state the Policy Improvement Theorem and describe why it Is important
* trace an execution of the Value lteration algorithm

| ogistics

 Assignment #3 is due today at 11:59pm
e |ate submissions accepted until Friday at 11:59pm

* Assignment #4 will be released no later than Thursday

 Due Thursday Dec 7 at 11:59pm

 Reminder: TAs are available during labs to help

Recap: Markov Decision Process

At each timet = 1,2,3,...

reward

R,
i Rt+1
- :
. S.. | Environment

| | | state
1. Agent receives input denoting S,

current state S,

2. Agent chooses action A,

3. Next time step, agent receives This interaction between agent
reward R, 41 and new state St+1, and environment produces a trajectory:
chosen according to a S0, Ags Ri5 91, A1, Ry, 85, A5, Rs, ...

distribution p(s’,r | s, a)

Recap: Value Functions

State-value function

V]Z'(S) = _n[Gt‘St = 5]

— Lz [Z YRivirr | S = S]
k=0

Action-value function

Qﬂ(sa Cl) i _][[Gl"SZ' — SaAl‘ — a]

— g [Z 7/th+k+1 5 = 8,A, = a]
k=0

Recap: Bellman Equations

Value functions satisfy a recursive consistency condition called the Bellman equation:
V?Z'(S) = _][[Gt‘St = 5]
AR 7G| S, = 5]

Z n(als) Z Zp(s’, r|s,a) [r + YE 1G] S, = S’]]

= Z m(a|s) ZP(S’» rls, @) |1+ yvy(s)

 V_Iis the unique solution to 's (state-value) Bellman equation

 [here is also a Bellman equation for &'s action-value function

Recap: GridWorld Example

3.3

8.8

4.4

5.3

1.5

+0

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

0.4

AI

-1.0

-0.4

-0.4

-0.6

-1.2

Reward dynamics

-1.9

-1.3

-1.2

1.4

-2.0

State-value function v_for
random policy

n(a|s) =0.25

GridWorld with Bounds Checking

What about a policy where we never try to go over an edge”?

A B 3.3(8.8/4.4/5.3|1.5 6.7 [10.8) 6.4 | 6.7 | 4.3
+5 1.5[3.0/ 2.3/ 1.9/ 0.5 4.24.7|3.7|3.4|2.8

H0| | B 0.1 0.7/ 0.7/ 0.4|-0.4 241241211917
-1.0-0.4/-0.4/-0.6/-1.2 1.5(1.4(1.3|1.2|1.1

A' -1.9/-1.3/-1.2/-1.4/-2.0 1.1(1.0/0.9/0.9|0.9

State-value function v_for

Reward dynamics random policy h q '
w(a | s) =025 ounded random policy 7

State-value function v_z for
B

Policy Evaluation

Question: How can we compute v_?

1. We know that v_ is the unique solution to the Bellman equations, so we
could just solve them (treating v (s}), ..., V(S| s|) as variables)

e put that Is tedious and annoying and slow
(it's a system of | &’ | linear equations in | & | unknowns)

* Also requires a complete model of the dynamics

2. Iterative policy evaluation

* Jakes advantage of the recursive formulation

terative Policy Evaluation

e |terative policy evaluation uses the Bellman equation as an update rule;
Vie1(8) = E IR + yvi(Sii D [S, = 5]
Y alals) Y p(s',rls,a)[r+yvs)]
a s’ r

» V_is a fixed point of this update, by definition

» Furthermore, starting from an arbitrary v, the sequence {v, } wil
convergetov_as k — oo

* (nontrivial to prove)

IN-Place [terative Policy Evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A<+ 0
Loop for each s € o:
v+ V(s)
Vi(s) < >, m(als)) ., p(s' T]s,a) [7“ + WV(S’)]
A + max(A, v — V(s)|)
until A < 6

» The updates are in-place: we use new values for V(s) immediately instead
of waiting for the current sweep to complete (why?)

 These are expected updates: Based on a weighted average (expectation)
of all possible next states (instead of what?)

terative Policy Evaluation

+0

AI

Reward dynamics

0.0 (00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0

00 { 00| 0.0 | 0.0 | 0.0
Vatk =0

terative Policy Evaluation

V(si 1) = a(m)[=1+yV(s; DI+ z(W)[=1 +yV(s; D]+
7(s)[0 + yV(s;)] + 7(e)[0 + yV(s,)]
= 0.25(=1) + 0.25(—1) + 0.25(0) + 0.25(0)

A -0.5| 0.0 | 0.0 | 0.0 | 0.0

00 | 00| 0.O | 0.0 | 0.0

+0 0.0 | 0.0 | 0.0 | 0.0 | 0.0

00 | 0.0 | 0.0 | 0.0 | 0.0

A' 00 | 0.0 | 0.O | 0.0 | 0.0
Reward dynamics Vatk =0

terative Policy Evaluation

V(s 5) = 2(M)[10 + yV(sy5)] + #(W)[10 + yV(s,5)]+
7(s)[10 + yV(s,5)] + 7(e)[10 + yV(s, 5)]
= 0.25[10 4+ 0.9(0)] + 0.25[10 + 0.9(0)]+
0.25[10 4+ 0.9(0)] + 0.25[10 + 0.9(0)]

A -0.5| 10 | 0.0 | 0.0 | 0.0

00 | 00| 0.O | 0.0 | 0.0

+0 0.0 | 0.0 | 0.0 | 0.0 | 0.0

00 | 0.0 | 0.0 | 0.0 | 0.0

Al 00 | 0O | 0.0 | 0.0 | 0.0
Reward dynamics Vatk =0

terative Policy Evaluation

V(s31) = a(m)[—1+yV(s; D] + z(W)[—1 + y V(s)]+
7(s)[0 + yV(s3)] + 7(e)[0 + yV(s,)]
= 0.25[-14+0.9(0)] + 0.25[0 + 0.9(10)]+
0.25[0 + 0.9(0)] + 0.25[0 + 0.9(0)]

A B 05|10 | 2 | 00| 0.0

00| 00| 0.0 | 0.0 | 0.0

+10 0.0 | 0.0 | 0.0 | 0.0 | 0.0
0.0 | 0.0 | 0.0 | 0.0 | 0.0

|
A 0.0 | 0.0 | 0.0 | 0.0 | 0.0

Reward dynamics Vatk =0

terative Policy evaluation
N GridWorlo

B
+a
0| | B'

AI

Reward dynamics

-0.5 | 10 2 5 0.6

03| 21 | 09 | 1.3 | 0.2

-03|1 04| 03| 04 | -0.1

-0.3| 0.0 | 0.0 | 0.1 | -0.2

-0.5|-03|-0.3]|-0.3]| -0.6
Vatk =1

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

14 | 97 | 3.7 | 53 | 1.0

04 | 25 | 18 | 1.7 | 0.4

-0.2 |1 06 | 06 | 0.5 | -0.1

-0.5| 0.0 | 0.0 | 0.0 | -0.5

-10|-06 | -0.5| -0.5]| -1.0
Vatk =2

terative Policy evaluation

N GridWorld

B
+a
HO| [B'

AI

Reward dynamics

34 | 89 | 45 | 53 | 1.5
16 | 3.0 | 23 | 1.9 | 0.6
01 | 08 | 0.7 | 04 | -04
-10| -04 | -0.3 | -0.6 | -1.2
-19 |13 |-12]|-14]| -2.0

Vatk = 10000

Question: What is an optimal policy?
A policy 7 is (weakly) better than a policy ' if it is better for all s € & :
n>n = v(s)=2v A(s) Vsed

An optimal policy m. Is weakly better than every other policy

* Question: Is an optimal policy guaranteed to exist for a given MDP?

All optimal policies share the same state-value function: (why?)

v:($) = max v (s)

Also the same action-value function:

g:(s,a) = max q,(s, a)

Bellman Optimality Equations

* V. must satisfy the Bellman equation too

e |nfact, it can be written in a special, policy-free way because we know that every state value is
maximized by 7x:

v«(s) = max g, (s, a)
a

=maxE_[G, | S, =5,A, =d]

=maxE_[R+7Gy | 5 =5,A,=al

A

=max E[R | +yv«($,.) | §;, =5,A, =d]

A

= max Zp(s’, r|s,a)lr+ yv«(s)]

s’ r

Bellman Optimality Equations

U
vi(s) = max B[R | + yv«(S, D[S, = 5,A, = d] " /45\
a

S
Max
= max Zp(s’, rls,a)r + yv«(s)] A A

Q*(Sa a) — L

R1 +ymax g«(S,,a’)
A

St — S’At — Cl] (q*) A
S/
r + y max g«(s’, a’)] max/8\ /8\

=) p(s.rls,a)
s’y

Optimal GridWorld

22.0

24.4

22.0

19.4

17.5

B
+§
0| | B’

19.8

22.0

19.8

17.8

16.0

17.8

19.8

17.8

16.0

14.4

AI

16.0

17.8

16.0

14.4

13.0

Gridworld

14.4

16.0

14.4

13.0

11.7

IR

N
T
:
T
T

LILIL L

RN
RRREE

~
x

Policy Improvement [heorem

Theorem:
et £ and ' be any pair of deterministic policies.

fqg (s,7'(s)=>2v(s) VseJ,

thenv_(s) 2 v (s) VseJ.

f you are never worse off at any state by following 7z’ for one step and then

following 7 forever after, then following 7’ forever has a higher expected value
at every state.

Policy Improvement [heorem Proof
19) < g,5.76))

_n[Rt+1 + VVn(StH) | 5 = 8A; = 7'(s))
= bR + ‘St:S]
_ﬂ’[Rl‘+1 T qn(St+1a ﬂ,(SH-l)) ‘ St — S]

_JT,[RH-I T 77_7:’[Rt+2 T 7V7z(St+2) ‘ SH-l’AH-l —]T,(St+1)] ‘ St — S]
_ﬂ’[Rt+1 Ty _ﬂ’[Rt+2] T 7/2 _n’[vﬂ(St+2)] ‘ St = 5]
AR YR Y | §; = s]

= AR YR+ 7’2Rz+3 Ty | S, = s]

E AR A YR+ VR + VR s+ - | S, = 5]

= v_(S) .

IN

|/\ cooe

Greedy Policy Improvement

Given any policy 7, we can construct a new greedy policy z’ that is guaranteed to be
at least as good.:

7'(s) = argmax g,(s, a)

=argmax E[R, .| +yv, (S IS, =5, A, =da]

A

= arg mslx Z p(s,r|s,a) [r + yvﬂ(s’)] .
s'.r

» If this new policy is not strictly better than the old policy, then v_(s) = v_ () for all
s € & (why?)

* Also means that the new (and old) policies are optimal (why?)

Policy lteration

WQ%UWOHW1HUW1%W2H %W*HU*

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

. Initialization

V(s) € R and 7(s) € A(s) arbitrarily for all s € S

. Policy Evaluation
Loop:

A+ 0 . . .
Loop for each s € S: his is a lot of iterations!

v V(s) Is it necessary to run to
V(s) <>, .08 rls,m(s)) |r + V()] completion?

A + max(A, v —V(s)])

until A < 6 (a small positive number determining the accuracy of estimation)

. Policy Improvement
policy-stable <— true
For each s € 3:
old-action < 7(s)
m(s) < argmax,) ., .p(s';7|s,a) r+V(s)]
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Value [teration

Value iteration interleaves the estimation and improvement steps:

VkH(S) = max I [Rt+1 + Vvk(StH) ‘ St — S,At — Cl]

= max)" p(s',r|s,@)[r + ()
s',r

Value Iteration, for estimating m ~ .,

Algorithm parameter: a small threshold 8 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:

A <0

Loop for each s € &:
v+ V(s)
V(s) < max,), .p(s',r|s,a) 4+ V(s
A+ max(A, |lv —V(s)|)

until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s’,r|s,a) [7" + VV(S/)}

Summary

An optimal policy has higher state value than any other policy at every state

A policy's state-value function can be computed by iterating an expected
update based on the Bellman equation

Given any policy &, we can compute a greedy improvement ’ by choosing
highest expected value action based on v,

Policy iteration: Repeat:
Greedy improvement using v_, then recompute v,

Value iteration: Repeat:
Recompute v_ by assuming greedy improvement at every update

