\Viarkov Decision Processes

CMPUT 261: Introduction to Artificial Intelligence

o &~ W b

| ecture Outline

Recap & Logistics

Markov Decision Processes

Returns & Episodes

Policies & Value Functions

Bellman Equations

After this lecture, you should be able to:

define a Markov decision process

represent a problem as a Markov
decision process

define a policy

explain whether a task Is episodic or
continuing

give expressions for the state-value
function and the action-value function

state the Bellman optimality
equations

give expressions for episodic and
discounted continuing returns

| ogistics

 Assignment 3 is due Tuesday Nov 21 at 11:59pm
* [ate submissions until the following Friday with 20% deduction
* Next week is reading week

e No labs or lectures

Recap: Deep Learning

Feedforward neural networks are extremely flexible parametric models that can be trained by
gradient descent

Convolutional neural networks add pooling and convolution operations

* Vastly more efficient to train on vision tasks, due to fewer parameters and domain-appropriate
Invariances

Recurrent neural networks process elements of a sequence one at a time, while maintaining state
e Same function with same parameters applied to each (element + state)

Transformers process elements of a sequence In parallel

* Each output element depends on weighed sum of transformed input elements, using same
parameters

* Weights are dot product of input element's key and output element's query
 Keys and gqueries are computed using the same parameters for all elements

Recap: Supervised Learning

Neural networks are typically used to solve supervised learning

tasks: Selecting a hypothesis i : X — Y that maps from input
features to target features.

Training
Examples

Population
h(x)
Loss

Training time Test time

Example: CanBot

 CanBot's job Is to find and recycle empty cans
* At any given time, its battery charge is either high or low
* |t can do three actions: search for cans, wait, or recharge
* Goal: Find cans efficiently without running out of battery charge
Questions:
1. Is this an instance of a supervised learning problem?

2. lIs this an instance of a search problem?

Reinforcement Learning

In a reinforcement learning task, an agent learns how to act based on
feedback from the environment.

* [he agent's actions may change the environment

e Actions now can impact effects of actions in later timesteps
 [he "right answer" is not known

* (Goal is to maximize total reward collected
 [he task may be either episodic or continuing

* The agent makes decisions online: determines how to act while interacting
with the environment

INnteracting with the Environment

At each timet = 1,2,3,...

reward

R,
i Rt+1
- :
. S.. | Environment

| | | state
1. Agent receives input denoting S,

current state S,

2. Agent chooses action A,

3. Next time step, agent receives This interaction between agent
reward R, 41 and new state St+1, and environment produces a trajectory:
chosen according to a S0, Ags Ri5 91, A1, Ry, 85, A5, Rs, ...

distribution p(s’,r | s, a)

Viarkov Decision Process

Definition:
A Markov decision process is a tuple (&, &, X, p), where

o & is a set of states,

o of is aset of actions,

« X € Risasetof rewards,

e p(s’,r|s,a) € [0,]] defines the dynamics of the process, and

» the probabilities from p completely characterize the environment's
dynamics

Dynamics

The four-argument dynamics function returns the probability of every state transition:

p(s,,r|s,a) =Pr(S,=s,R =r|S,_=5,A_; =a)

't is often convenient to use shorthand notation rather than the full four-argument
dynamics function:
p(s'ls,a) =Pr(S, =s'|S,_ =s5,A_; = a) = Z p(s’,r|s,a)
reR
r(s,a) = E[R|S,_, =5,A,_| =da] = Z r Z p(s’,r|s,a)
reX sed
(s',r|s,a)
r(s,a,s’) = E[R|S,_{=5,A_1=a,S, =] = P ‘

= ps']s.a)

CanBot as a
Reinforcement Learning Agent

Question: How can we represent CanBot as a reinforcement learning agent”

* Need to define states, actions, rewards, and dynamics

17 Twait 57 I'search
s a s’ p(s'|s,a) | r(s,a,s’) t=p,~3
high search high o Tsearch T search
high search low l — « Tsearch
low search high | 1 -0 —3
low search low p "'search 1, 0 recharge
high wait high 1 Tvait O low
high wait low 0 - @
low wait high | O -
low wait low 1 P 446
low recharge high 1 0 search
low recharge low 0 -

Oé, I"'search 1 T 047 I"'search 17 T'wait

(Image: Sutton & Barto, 2018)

Reward Hypothesis

Definition: Reward hypothesis

An agent's goals and purposes can be entirely represented as the maximization
of the expected value of the cumulative sum of a scalar signal.

Returns for Episodic Tasks

Question:
What does "maximize the expected value of the cumulative sum of rewards" mean”

Definition: A task is episodic if it ends after some finite number 1" of time
steps in a special terminal state S7.

Definition: The return G, after time ¢ is the sum of rewards received after
time f: Gl‘ = Rt+1 +Rt+2 +Rt+3 + ... +RT

Answer: The return G, is a random variable. In an episodic task, we want to

maximize its expected value E[G,].

Returns for Continuing Tasks

Definition: A task is continuing if it does not end (i.e., 7' = ©0).
* |n acontinuing task, we can't just maximize the sum of rewards (why?)

e |nstead, we maximize the discounted return:

G, =R 7R+ 72Rt+3 T

o0

_ k

— Z ATV
k=0

\ -y < 1listhediscount factor

 Returns are recursively related to each other:

G, =R +7R 72Rt+3 T ...
=Ry + 7G4

Policles

Question: How should an agent in a Markov decision process choose its actions?

 Markov assumption: The state incorporates all of the necessary
iInformation about the history up until this point

e |.e., Probabllities of future rewards & transitions are the same from
state S, regardless of how you got there

« So the agent can choose its actions based only on S,

» This is called a (memoryless) policy: z(a | s) € [0,1] is
the probability of taking action a given that the current state is §

State-Value Function

* Once you know the policy & and the dynamics p, you can compute the
probabillity of every possible state transition starting from any given state

e |t is often valuable to know the expected return starting from a given state
S under a given policy & (why?)

» [he state-value function v_ returns this quantity:

v (s) = E_[G $= 5]

o0
— k
7 2 Y Ry gy
k=0

1%
1
&

Using State-Value Function

Question: Suppose state transitions are deterministic.

Does It make sense to always

choose the action that leads to the next state s” with the highest v_(s)?

Using State-Value Function

Question: Suppose state transitions are deterministic.

Does It make sense to always

choose the action that leads to the next state s’ with the highest v_(s)?

Not always; the reward for the transition itself is also important!

Action-Value Function

The action-value function g_(s, a) estimates the expected return G, starting
from state s It we

1. Take action a in state S, = s, and then Question:
How Is this any
2. Follow policy & for every state S, afterward different from the
state-value

function v_(s)?

q,(s,a) =E_|G,|S, = s,A, = a]

o0
m k _ _
7 Z V' Riip1|9=58,4,=a
k=0

Bellman Equations

Value functions satisfy a recursive consistency condition G,=R_,+yR ,+7R.5+ ...
called the Bellman equation: =R +7(Ruy+ 7R s+ ...)

= Riy1 76

V,(s) =

EIA + cB] = E|A] + cE[B]

s [r + YE LGy [S = S,]]

PriA, = a | S, = s1|r + yE Gy | Spyy = 5]
a s r

= D mals)), D JpGrls. alfr + fEAGis S,y = 5]
a s’ oor

_ 2 w(als) Zp(s,’ rls,a) [r 4 - . v_is the unique solution to z's Bellman equation
a s’

« Thereis also a Bellman equation for 's action-value function

BacKkup Diagrams

BSackup diagrams help to visualize the flow of information back to a state
from Its successor states or action-state pairs:

>
v (s) = E[G|S = s] A/CA\ .

_ Z m(a|s) Zp(s’, rls,a)|r+ yvy (s

D T

OO OO O O

Backup diagram for v,

(Image: Sutton & Barto, 2018)

GridWorld

At each cell, can go north, south,

east, west

Iry to go off the edge: reward of -1

Leaving state A: takes you to state A,

reward of +10

Leaving state B: takes you to state B,
reward of +5

A B
+5
HO| [B'
Al

(Image: Sutton & Barto, 2018)

GridWorld

3.3

8.8

4.4

5.3

1.5

+0

1.5

3.0

2.3

1.9

0.5

0.1

0.7

0.7

0.4

-0.4

AI

-1.0

0.4

0.4

-0.6

-1.2

Reward dynamics

-1.9

-1.3

-1.2

1.4

-2.0

n(als) =0.25

State-value function v, for random policy

(Image: Sutton & Barto, 2018)

Summary

Supervised learning models are trained offline using labelled training examples,
and then make predictions

Reinforcement learning agents choose their actions online, and update thelr
behaviour based on rewards from the environment

We can formally represent reinforcement learning environments using
Markov decision processes, for both episodic and continuing tasks

Reinforcement learning agents maximize expected returns

Policies map states to (distribution over) actions

Given a policy 7, every state s has an expected value v_(s)

State-value and action-value functions satisfy the Bellman equations

