Inference in Belief Networks

CMPUT 261: Introduction to Artificial Intelligence

P&M §8.4

Assignments

- Assignment #1: Late deadline was last night
 - Marking should be done by next week
- Assignment #2 will be posted today
 - Due Oct 17/2023 (two weeks from today) at 11:59pm

Lecture Outline

- 1. Recap
- 2. Factor Objects
- 3. Variable Elimination
- 4. Further Optimizations

After this lecture, you should be able to:

- encode a factoring of a joint distribution as a collection of factor objects for variable elimination
- define the factor operations used in variable elimination
- describe the high-level steps of variable elimination
- compare efficiency of different variable orderings for variable elimination
- trace an execution of variable elimination

Recap: Belief Networks

Definition:

A belief network (or Bayesian network) consists of:

- 1. A directed acyclic graph, with each node labelled by a random variable
- 2. A domain for each random variable
- 3. A conditional probability table for each variable given its parents
- The graph represents a specific factorization of the full joint distribution

Key Property:

Every node is independent of its non-descendants, conditional on its parents

Recap: Queries

- The most common task for a belief network is to query posterior probabilities given some observations
- Easy cases:
 - Posteriors of a single variable conditional only on parents
 - Joint distributions of variables early in a compatible variable ordering
- Typically, the observations have no straightforward relationship to the target
- This lecture: mechanical procedure for computing arbitrary queries

A (Simplistic) Algorithm for Queries

Query: P(F | S = 1, R = 1)

- 1. Condition: $P(F, T, A, L, S = 1, R = 1) = P(F)P(T)P(A \mid T, F)P(S = 1 \mid F)P(L \mid A)P(R = 1 \mid L)$
- 2. Normalize: $P(F, T, A, L \mid S = 1, R = 1) = \frac{P(F, T, A, L, S = 1, R = 1)}{\sum_{f \in \text{dom}(F), P(F = f, T = t, A = a, L = l, S = 1, R = 1)}$ $t \in \text{dom}(A),$ $l \in \text{dom}(L)$
- 3. Marginalize: $P(F \mid S = 1, R = 1) = \sum_{\substack{t \in \text{dom}(T), \\ a \in \text{dom}(A), \\ l \in \text{dom}(L)}} P(F, T = t, A = a, L = l \mid S = 1, R = 1)$

Factor Object

- The Variable Elimination algorithm exploits the factorization of a joint probability distribution encoded by a belief network in order to answer queries
- A factor object is a function $f(X_1, \ldots, X_k)$ from random variables to a real number
- Input: factors representing the conditional probability tables from the belief network

$$P(L \mid A)P(S \mid F)P(A \mid T, F)P(T)P(F)$$

becomes factor objects

$$f_1(L,A)f_2(S,F)f_3(A,T,F)f_4(T)f_5(F)$$

• Output: A new factor encoding the target posterior distribution

E.g.,
$$f_{12}(T)$$
.

Conditional Probabilities as Factor Objects

• A conditional probability $P(Y \mid X_1, \dots, X_n)$ is a factor object $f(Y, X_1, \dots, X_n)$ that obeys the constraint:

$$\forall v_1 \in dom(X_1), v_2 \in dom(X_2), \dots, v_n \in dom(X_n) : \left[\sum_{y \in dom(Y)} f(y, v_1, \dots, v_n) \right] = 1.$$

- Answer to a query is a factor object constructed by applying operations to the input factors
 - Operations on factor objects are *not* guaranteed to **maintain** this constraint!
 - Solution: Don't sweat it!
 - Operate on unnormalized probabilities during the computation
 - Normalize at the end of the algorithm to re-impose the constraint

Conditioning

Conditioning is an operation on a single factor

 Constructs a new factor that returns the values of the original factor with some of its inputs fixed

Definition:

For a factor $f_1(X_1, \ldots, X_k)$, conditioning on $X_i = v_i$ yields a new factor

$$f_2(X_1, ... X_{i-1}, X_{i+1}, ..., X_k) = (f_1)_{X_i = v_i}$$

such that for all values $v_1, ..., v_{i-1}, v_{i+1}, ..., v_k$ in the domain of $X_1, ..., X_{i-1}, X_{i+1}, ..., X_k$

$$f_2(v_1, ..., v_{i-1}, v_{i+1}, ..., v_k) = f_1(v_1, ..., v_{i-1}, \mathbf{v_i}, v_{i+1}, ..., v_k).$$

Conditioning Example

$$f_2(A, B) = f_1(A, B, C)_{C=true}$$

 f_1

Α	В	С	value
F	F	F	0.1
F	F	Τ	0.88
F	Т	F	0.12
F	Τ	T	0.45
Т	F	F	0.7
Т	F	Т	0.66
Т	Т	F	0.1
Т	Т	Т	0.25

 f_2

Α	В	value
F	F	88.0
F	Τ	0.45
Т	F	0.66
Т	Τ	0.25

Multiplication

Multiplication is an operation on two factors

 Constructs a new factor that returns the product of the rows selected from each factor by its arguments

Definition:

For two factors $f_1(X_1, ..., X_j, Y_1, ..., Y_k)$ and $f_2(Y_1, ..., Y_k, Z_1, ..., Z_{\ell})$,

multiplication of f_1 and f_2 yields a new factor

$$(f_1 \times f_2) = f_3(X_1, ..., X_j, Y_1, ..., Y_k, Z_1, ..., Z_\ell)$$

such that for all values $x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_\ell$,

$$f_3(x_1, ..., x_j, y_1, ..., y_k, z_1, ..., z_\ell) = f_1(x_1, ..., x_j, y_1, ..., y_k) f_2(y_1, ..., y_k, z_1, ..., z_\ell).$$

Multiplication Example

$$f_3(A, B, C) = f_1(A, B) \times f_2(B, C)$$

f_1			
A	В	value	
F	F	0.1	
F	Τ	0.2	
Т	F	0.3	
Τ	Τ	0.4	

•	J_2			_
	В	С	value	
	F	F	1.0	
	F	Τ	0	
	Τ	F	0.5	
	Т	Т	0.25	

_	J 3				
	A	В	С	value	
	F	F	F	0.1	
	F	F	Т	0	
	F	Τ	F	0.1	
	F	Т	Т	0.05	
	Т	F	F	0.3	
	Т	F	Т	0	
	Т	Т	F	0.2	
	Т	Τ	Τ	0.1	

Summing Out

Summing out is an operation on a single factor

 Constructs a new factor that returns the sum over all values of a random variable of the original factor

Definition:

For a factor $f_1(X_1, ..., X_k)$, summing out a variable X_i yields a new factor

$$f_2(X_1, ..., X_{i-1}, X_{i+1}, ..., X_k) = \left(\sum_{X_i} f_1\right)$$

such that for all values $v_1, ..., v_{i-1}, v_{i+1}, ..., v_k$ in the domain of $X_1, ..., X_{i-1}, X_{i+1}, ..., X_k$

$$f_2(v_1, ..., v_{i-1}, v_{i+1}, ..., v_k) = \sum_{\mathbf{v_i} \in dom(X_i)} f_1(v_1, ..., v_{i-1}, \mathbf{v_i}, v_{i+1}, ..., v_k).$$

Summing Out Example

$$f_2(B) = \sum_A f_1(A, B)$$

f_1				
	Α	В	value	
	F	F	0.1	
	F	Т	0.2	
	Т	F	0.3	
	Т	Т	0.4	

f_2		
В	value	
F	0.4	
Τ	0.6	

Variable Elimination

• Given observations $Y_1=v_1,\ldots,Y_k=v_k$ and query variable Q, we want

$$P(Q \mid Y_1 = v_1, ..., Y_k = v_k) = \frac{P(Q, Y_1 = v_1, ..., Y_k = v_k)}{\sum_{q \in dom(Q)} P(Q = q, Y_1 = v_1, ..., Y_k = v_k)}.$$

- Basic idea of variable elimination:
 - 1. Condition on observations by conditioning
 - 2. Construct joint distribution factor by multiplication
 - 3. Remove unwanted variables (neither query nor observed) by summing out
 - 4. Normalize at the end
- Doing these steps in order is correct but not efficient
- Efficiency comes from interleaving the order of operations

Sums of Products

- 2. Construct joint distribution factor by multiplication
- 3. Remove unwanted variables (neither query nor observed) by summing out

The computationally intensive part of variable elimination is computing sums of products

Example: multiply factors $f_1(Q, A, B, C)$, $f_2(C, D, E)$; sum out A, E

1.
$$f_3(Q, A, B, C, D, E) = f_1(Q, A, B, C) \times f_2(C, D, E) : 2^6$$
 multiplications

2.
$$f_4(Q, B, C, D) = \sum_{A,E} f_3(Q, A, B, C, D, E)$$
: 3 × 16 additions

Total: 112 computations

Efficient Sums of Products

We can reduce the number of computations required by changing their order.

$$\sum_{A} \sum_{E} f_1(Q, A, B, C) \times f_2(C, D, E)$$

$$= \left(\sum_{A} f_1(Q, A, B, C)\right) \times \left(\sum_{E} f_2(C, D, E)\right)$$

- 1. $f_3(C,D) = \sum_E f_2(C,D,E)$: 2^2 additions
- 2. $f_4(Q, B, C) = \Sigma_A f_1(Q, A, B, C)$: 2^3 additions
- 3. $f_5(Q, B, C, D) = f_3(Q, B, C) \times f_4(B, C, D) : 2^4$ multiplications

Total: 28 computations

Variable Elimination Algorithm

Input: query variable Q; set of variables Vs; observations O; factors Ps representing conditional probability tables

```
Fs := Ps
for each X in Vs \setminus \{Q\} according to some elimination ordering:
  Rs := \{ F \in Fs \mid F \text{ involves } X \}
   if X \in O:
     for each F \in Rs:
         F' := F conditioned on observed value of X
        Fs := (Fs \setminus \{F\}) \cup \{F'\}
   else:
      T := product of factors in Rs
     N := \mathbf{sum} X out of T
     Fs := (Fs \backslash Rs) \cup \{N\}
T := \mathbf{product} of factors in Fs
N := \mathbf{sum} \ Q out of T
return T/N (i.e., normalize T)
```

Variable Elimination Example: Conditioning

Query: P(T | S = 1, R = 1)

Variable ordering: S, R, F, A, L

$$P(T, F, A, S, L, R) = P(T)P(F)P(A \mid T, F)P(S \mid F)P(L \mid A)P(R \mid L)$$

Construct factors for each table:

$$\{f_0(T), f_1(F), f_2(T, A, F), f_3(S, F), f_4(L, A), f_5(R, L)\}$$

Condition on
$$S$$
: $f_6 = (f_3)_{S=1}$
 $\{f_0(T), f_1(F), f_2(T, A, F), f_6(F), f_4(L, A), f_5(R, L)\}$

Condition on
$$R$$
: $f_7 = (f_5)_{R=1}$
 $\{f_0(T), f_1(F), f_2(T, A, F), f_6(F), f_4(L, A), f_7(L)\}$

Variable Elimination Example: Elimination

Query: P(T | S = 1, R = 1)

Variable ordering: S, R, F, A, L

$$\{f_0(T), f_1(F), f_2(T, A, F), f_6(F), f_4(L, A), f_7(L)\}$$

Sum out
$$F$$
 from product of f_1, f_2, f_6 : $f_8 = \sum_F (f_1 \times f_2 \times f_6)$

$$\{f_0(T), f_8(T, A), f_4(L, A), f_7(L)\}$$

Sum out
$$A$$
 from product of f_8, f_4 : $f_9 = \sum_A (f_8 \times f_4)$

$$f_0(T), f_9(T, L), f_7(L)$$

Sum out
$$L$$
 from product of $f_9, f_7: f_{10} = \sum_L (f_9 \times f_7)$

$$\{f_0(T), f_{10}(T)\}$$

Variable Elimination Example: Normalization

Query: P(T | S = 1, R = 1)

Variable ordering: S, R, F, A, E

$$\{f_0(T), f_{10}(T)\}$$

Product of remaining factors: $f_{11} = f_0 \times f_{10}$ $\{f_{11}(T)\}$

Normalize by division:

$$f_{12}(T) = \frac{f_{11}(T)}{\sum_{T} f_{11}(T)}$$

Optimizing Elimination Order

- Variable elimination exploits efficient sums of products on a factored joint distribution
- The elimination order of the variables affects the efficiency of the algorithm
- Finding an optimal elimination ordering is NP-hard
- Heuristics (rules of thumb) for good orderings:
 - Observations first: Condition on all of the observed variables first
 - Min-factor: At every stage, select the variable that constructs the smallest new factor
 - Problem-specific heuristics

Min-Factor Example

Factors:

$$\{f_1(Z,B),f_2(B,C),f_3(C),f_4(D,C),f_5(A,B,C),f_6(E,C)\}$$

- Which variable creates the largest new factor when it is eliminated?
 - C: Remove $f_2(B,C), f_3(C), f_4(D,C), f_5(A,B,C), f_6(E,C),$ Add $f_7(A,B,D,E)$
- Which variable creates the smallest new factor when it is eliminated?
 - Z: Remove $f_1(Z,B)$, add $f_7(B)$
 - (E would also work)
 - Number of rows is what matters, not number of arguments

Optimization: Pruning

- The structure of the graph can allow us to drop leaf nodes that are neither observed nor queried
 - Summing them out for free
- We can repeat this process:

Optimization: Preprocessing

Finally, if we know that we are always going to be observing and/or querying the same variables, we can **preprocess** our graph; e.g.:

- 1. **Precompute** the **joint distribution** of all the variables we will observe and/or query
- 2. Precompute conditional distributions for our exact queries

Summary

- Variable elimination is an algorithm for answering queries based on a belief network
- Operates by using three operations on factors to reduce graph to a single posterior distribution
 - 1. Conditioning
 - 2. Multiplication
 - 3. Summing out
 - 4. (Once only): Normalization
- Distributes operations more efficiently than taking full product and then summing out
 - Optimal order of operations is NP-hard to compute
- Additional optimization techniques: heuristic ordering, pruning, precomputation