Branch & Bound

or, How | Learned to Stop Worrying and Love Depth First Search

CMPUT 261: Introduction to Artificial Intelligence

| ogistics

Assignment #1 was released last week
* Available on eClass

 Due: Thursday September 28 at 11:59pm

Recap: Heuristics

Definition:

A heuristic function is a function A(n) that returns a non-negative estimate
of the cost of the cheapest path from n to a goal node.

* e.g., Euclidean distance instead of travelled distance

Definition:
A heuristic function is admissible if 4(n) is always less than or equal to the
cost of the cheapest path from n to a goal node.

» i.e., h(n) is alower bound on cost({n, ..., g)) for any goal node g

Recap: A* Search

 A* search uses both path cost information and heuristic
iInformation to select paths from the frontier

» Let f(p) = cost(p) + h(p)

» f(p) estimates the total cost to the nearest goal node
starting from p

» A* removes paths from the frontier with smallest f(p)

actual estimated
start > N >

oal
costp) h(n)

Recap: A* Search Algorithm

Input: a graph; a set of start nodes; a goal function

frontier := {(s) | sis a start node} e, f(ng, ... m)) < f(p)
_ L for all other paths p € frontier
while frontier is not eM
select f~-minimizing path (n, ..., n,) from frontier
remove (1, ..., ;) from frontier
if goal(ny):
return (n, ..., n;)

for each neighbour n of n;:

add (n,, ..., ny, n) to frontier
end while

Recap: A" is Optimal

If there is a solution, A* using heuristic function A always returns an optimal solution (in
finite time), If

1. The branching factor is finite,

2. All arc costs are greater than some € > (), and

3. his an admissible heuristic.
Proof:
1. The optimal solution is guaranteed to be removed from the frontier eventually

2. No suboptimal solution will be removed from the frontier whenever the frontier
contains a prefix of the optimal solution

| ecture Outline

1. Recap & Logistics
Optimal heuristic usage

Branch & Bound

Cycle Pruning

o &~ Wb

Exploiting Search Direction

After this lecture, you should be able to:

* Define heuristic consistency, identity whether a heuristic is consistent

* Implement cycle pruning

e EXxplain when cycle pruning is and is not space- and time-efficient

* Implement branch & bound and IDA* and demonstrate their operation
e Derive the space and time complexity for branch & bound and IDA~

* Predict whether forward, backward, or bidirectional search are more efficient for a search problem

Consistent Heuristic

Definition:
A heuristic & is consistent if, for every pair of nodes n,n’ € N,

h(n’) < cost(n,n’) + h(n).

* Thatis, a heuristic never decides that things are "harder than it thought” along a given path

* Question: is /1 consistent on the graph below?

* Question: is /7 admissible on the graph below?

—euristic Usage of A”

Definition:
Let p™ be an optimal solution.

A path p is surely removed by A* if f(p) < f(p™).

Theorem:
Any path that is surely removed by A* using a consistent heuristic A will also be

removed from the frontier by any other optimal graph search algorithm using A.

.e., there is no way to use a given consistent heuristic that is guaranteed to
find an optimal solution faster than A*, "up to tie-breaking”

Space Complexity of A*

* A* makes use of heuristic information to improve time complexity
* Focuses on parts of the search graph that are likely to contain solution

 Explores paths in order of f-value

* Frontier might need to contain all paths of the same cost as the solution at
some point

* Using heuristic to change the order that depth-first-search puts paths go into the
frontier doesn't reliably improve its time complexity

* |n general, DFS with heuristic-ordering will expand more paths than A* with
same heuristic

« Can we use a heuristic in some other way to improve DFS's time
complexity without giving up its good space complexity?

Branch & Bound

 The f(p) function provides a path-specific lower bound on solution cost
starting from p

* |dea: Maintain a global upper bound on solution cost also

* [hen prune any path whose lower bound exceeds the upper bound

* Question: Where does the upper bound come from?

 Cheapest solution found so far

e Before solutions found, specified on entry

Branch & Bsound Algorithm

Input: a graph; a set of start nodes; a goal function; heuristic h(n); bound,,

frontier := {(s) | sis a start node}
bound := bound,,
best .= (@
while frontier is not empty:
select the newest path (n,, ..., n;) from frontier
remove (n,, ..., n;) from frontier
if f((ng, ...,n)) < bound :
if goal(n,):
bound := cost({ny, ..., n)) Question: \Why not f here?
best := (ny, ..., n;)
else:
for each neighbour n of n;:
add (n,, ..., n,, n) to frontier
end while
return best

Choosing bound,,

If boundy is set to just above the optimal cost, branch & bound will explore no more paths than A*

» Won't explore any paths p’ that are more costly than the optimal solution, because

f(p’) > bound,,

» Wil eventually find the optimal solution path p* because f(p*) < bound,,

But we don't (in general) know the cost of the optimal solution!
One possibility: Initialize bound, = oo
* \What problems could this have?

Solution: iteratively increase bound,, (like with IDS)

e This algorithm is sometimes called IDA*

 Some lower-cost paths will be re-explored

Initialize bound,,

until solution found:

Perform branch & bound using bound,,

Increase bound,,

terative Deepening A* (IDAY)

1. What should we initialize bound,, to?

2. How much should we increase bound,, by at each step?

* Oneidea:
teratively increase bound to the lowest f-value path that was pruned

* Guarantees at least one more path will be explored
e (Can stop immediately after finding a solution (why?)

* Time complexity can be much worse than A*;
O(b*™) instead of O(b™) (why?)

» Need to increase bound,, by enough (else won't explore enough),
but not too much (else won't prune enough)

 Choosing next f-limit is an active area of research
(see https:// www.movingai.com/SAS/IDA/)

Initialize bound,,

until solution found:

Perform branch & bound using bound,,

Increase bound,,

https://www.movingai.com/SAS/IDA/

Heuristic

Depth First

Branch &

Space
complexity

Time
Complexity

Heuristic
Usage

Optimal?

Limited

No

Optimal

(up to tie-breaking,

for consistent h)

Yes

Optimal
(if bound low
enough)

Yes
(if bound high
enough)

O(mb)

Close to
Optimal

Yes

Cycle Pruning

Questions:

1. |Is depth-first search on
with cycle pruning
complete for finite

* Even on finite graphs, depth-first search may not pe graphs”?

mpl it can I le. | i
complete, because it can get trapped In a cycle 5> What is the time

» A search algorithm can prune any path that ends in a node complexity for cycle
already on the path without missing an optimal solution checking In depth-first
(Why?) search’

3. What is the time
complexity for cycle
checking In breadth-first
search?

Cycle Pruning
Depth First Search

Input: a graph; a set of start nodes; a goal function

frontier := {(s) | sis a start node}
while frontier is not empty:

select the newest path (n,, ..., n,) from frontier
remove (1, ..., 1) from frontier
if n, # n;forall0 < j <k
if goal(n,):
return (n, ..., n;)

for each neighbour n of n;:

add (ny, ..., n,, n) to frontier
end while

Exploiting Search Direction

* \When we care about finding the path to a known goal
node, we can search forward, but we can often search

backward

 Given a search graph G = (N, A), known goal node g,
and set of start nodes S, can construct a reverse
search problem G = (N,A"):

1. Designate g as the start node

2. A"= {{ny,n) | (n;,n,) €A} Questions:
1. When is this useful?

3. goal'(n)y=1ifnes
2. When is this infeasible?

(.e., If m is a start node of the original problem)

Reverse Search

Definitions:

1. Forward branch factor: Maximum number of outgoing neighlbours
Notation: b

* Time complexity of forward search: O(b"")

2. Reverse branch factor: Maximum number of incoming neighbours
Notation: r

 Time complexity of reverse search: O(r"") f

When the reverse branch factor is smaller than the forward branch
factor, reverse search is more time-efficient.

Bidirectional Search

* |dea: Search backward from from goal and
forward from start simultaneously

 [Ime complexity is exponential in path length,
SO exploring half the path length is an
exponential iImprovement

e Even though must explore half the path
ength twice

 Main problems:
 Guaranteeing that the frontiers meet

* Checking that the frontiers have met

Questions:

VWhat bidirectional
combinations of search
algorithm make sense?

e Breadt
Breadt

e Depth fi

Dept

N fi

h first +

h first?

St
St

I
f?

e Breadth first +
Depth first”?

g

Wi

Summary

e more accurate the heuristic is, the fewer the paths A~
| explore

Branch & bound combines the optimality guarantee and
heuristic efficiency of A*™ with the space efficiency ot depth-
first search

IDA* Is an iterative-deepening version of branch & bound that
doesn't require that you get the initial bound "right”

But its time complexity can be significantly worse

Iweaking the direction of search can yield efficiency gains

