### Heuristic Search

CMPUT 261: Introduction to Artificial Intelligence

P&M §3.6

### Logistics

- Labs begin this week
  - Including a quick Python refresher
- Assignment #1 released later today
  - Download from (and submit on) eClass
  - Due: Thursday, September 28 at 11:59pm

### Lecture Outline

- 1. Logistics & Recap
- 2. Heuristics
- 3. A\* Search

#### After this lecture, you should be able to:

- Implement and demonstrate the operation of A\* search on a graph
- Identify whether a heuristic is admissible
- Construct an admissible heuristic for an arbitrary search problem
- Identify whether one heuristic dominates another
- Construct a dominating heuristic for a set of given heuristics
- Explain when a heuristic will allow more efficient exploration

### Recap: Uninformed Search

Different search strategies have different properties and behaviour

- Depth first search is space-efficient but not always complete or time-efficient
- Breadth first search is complete and always finds the shortest path to a goal, but is not space-efficient
- Iterative deepening search can provide the benefits of both, at the expense of some time-efficiency
- All three strategies must potentially explore every path, and are not guaranteed to return an optimal solution
- Least cost first search is optimal (under some conditions), but still must potentially explore every path

### Recap: Iterative Deepening Search

Input: a graph; a set of start nodes; a goal function

```
for max\_depth from 1 to \infty:
    more_nodes := False
    frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
   while frontier is not empty:
      select the newest path \langle n_0, ..., n_k \rangle from frontier
      remove \langle n_0, ..., n_k \rangle from frontier
      if goal(n_k):
          return \langle n_0, \ldots, n_k \rangle
      if k < max_depth:
          for each neighbour n of n_k:
             add \langle n_0, ..., n_k, n \rangle to frontier
      else if n_k has neighbours:
          more nodes := True
   end-while
   if more_nodes = False:
       return None
```

### Recap: Optimality

#### **Definition:**

An algorithm is **optimal** if it is guaranteed to return an optimal (i.e., **minimal-cost**) solution **first**.

- Depth-first search, breadth-first search, iterative deepening search are not optimal
- Least-cost first search is optimal (if there is a positive lower bound on arc costs)

# Recap: Search Strategies

|                   | Depth First        | Breadth<br>First   | Iterative Deepening | Least Cost<br>First                 |
|-------------------|--------------------|--------------------|---------------------|-------------------------------------|
| Selection         | Newest             | Oldest             | Newest,<br>multiple | Cheapest                            |
| Data<br>structure | Stack              | Queue              | Stack,<br>counter   | Priority<br>queue                   |
| Complete?         | Finite graphs only | Complete           | Complete            | Complete if $cost(p) > \varepsilon$ |
| Space complexity  | O(mb)              | O(b <sup>m</sup> ) | O(mb)               | O(b <sup>m</sup> )                  |
| Time complexity   | O(b <sup>m</sup> ) | $O(b^m)$           | O(mbm) **           | O(b <sup>m</sup> )                  |
| Optimal?          | No                 | No                 | No                  | Optimal                             |

### Domain Knowledge

- Domain-specific knowledge can help speed up search by identifying promising directions to explore
- We will encode this knowledge in a function called a heuristic function which estimates the cost to get from a node to a goal node
- The search algorithms in this lecture take account of this heuristic knowledge when **selecting** a path from the frontier

### Heuristic Function

#### **Definition:**

A **heuristic function** is a function h(n) that returns a non-negative estimate of the cost of the **cheapest** path from node n to **some** goal node.

- For paths:  $h(\langle n_0, ..., n_k \rangle) = h(n_k)$
- Uses only **readily-available** information about a node (i.e., easy to compute)
- Problem-specific

### Admissible Heuristic

#### **Definition:**

A heuristic function is admissible if h(n) is always less than or equal to the actual cost of the cheapest path from n to any goal node.

• i.e., h(n) is a lower bound on  $cost(\langle n, ..., g \rangle)$  for any goal node g

### Example Heuristics

 Number of dirty rooms for VacuumBot (ignores the need to move between rooms)





Euclidean distance for DeliveryBot







 Points for chess pieces (ignores positional strength)









Question: Which of these heuristics are admissible? Why?

# Constructing Admissible Heuristics

- Search problems try to find a cost-minimizing path, subject to constraints encoded in the search graph
- How to construct an easier problem? Drop some constraints.
  - This is called a relaxation of the original problem
- The cost of the optimal solution to the relaxation will always be an admissible heuristic for the original problem (Why?)
- Neat trick: If you have two admissible heuristics  $h_1$  and  $h_2$ , then  $h_3(n)=\max\{h_1(n),h_2(n)\}$  is admissible too! (Why?)

### Simple Uses of Heuristics

- Heuristic depth first search: Add neighbours to the frontier in decreasing order of their heuristic values, then run depth first search as usual
  - Will explore most promising successors first, but
  - Still explores all paths through a successor before considering other successors
  - Not complete, not optimal
- Greedy best first search: Select path from the frontier with the lowest heuristic value
  - Not guaranteed to work any better than breadth first search (why?)

### A\* Search

- A\* search uses **both** path cost information and heuristic information to select paths from the frontier
- Let f(p) = cost(p) + h(p)
  - f(p) estimates the total cost to the nearest goal node starting from p
- A\* removes paths from the frontier with smallest f(p)
- When h is admissible,  $p^* = \langle s, ..., n, ..., g \rangle$  is a solution, and  $p' = \langle s, ..., n \rangle$  is a prefix of  $p^*$ :

• 
$$f(p') \leq cost(p^*)$$
 (why?)

$$\underbrace{\frac{\text{actual}}{\text{cost(p)}} n} \underbrace{\frac{\text{estimated}}{\text{b(n)}}}_{\text{goal}}$$

# A\* Search Algorithm

**Input:** a *graph*; a set of *start nodes*; a *goal* function

```
frontier := \{\langle s \rangle \mid s \text{ is a start node}\}
while frontier is not empty:
    select f-minimizing path \langle n_0, ..., n_k \rangle from frontier
    remove \langle n_0, ..., n_k \rangle from frontier
    if goal(n_k):
       return \langle n_0, \ldots, n_k \rangle
   for each neighbour n of n_k:
       add \langle n_0, ..., n_k, n \rangle to frontier
```

end while

#### i.e., $f(\langle n_0, ..., n_k \rangle) \leq f(p)$ for all other paths $p \in frontier$

#### **Question:**

What data structure for the frontier implements this search strategy?

# A\* Search Example: DeliveryBot

• Heuristic: Euclidean distance

• Question: What is  $f(\langle o103,b3\rangle)$ ?  $f(\langle o103,o109\rangle)$ ?

- A\* will spend a bit of time exploring paths in the labs before trying to go around via o109
- At that point the heuristic starts helping more
- Question: Does breadth-first search explore paths in the lab too?
- Question: Does breadth-first search explore any paths that A\* does not?



# A\* Optimality

#### Theorem:

If there is a solution of finite cost,  $A^*$  using heuristic function h always returns an **optimal** solution (in **finite time**), if

- 1. The branching factor is finite, and
- 2. All arc costs are greater than some  $\epsilon > 0$ , and
- 3. h is an admissible heuristic.

#### **Proof:**

- No suboptimal solution will be removed from the frontier whenever the frontier contains a prefix of the optimal solution
- 2. The optimal solution is guaranteed to be removed from the frontier eventually

## A\* Optimality Proofs: A Lexicon

An admissible heuristic: h(n)

$$f(\langle n_0, ..., n_k \rangle) = \operatorname{cost}(\langle n_0, ..., n_k \rangle) + h(n_k)$$

A start node: S

A goal node: z (i.e., goal(z) = 1)

The optimal solution:  $p^* = \langle s, ..., a, b, ...z \rangle$ 

A prefix of the optimal solution:  $p' = \langle s, ..., a \rangle$ 

A suboptimal solution:  $g = \langle s, q, ..., z \rangle$ 

# A\* Optimality

**Proof part 1:** Optimality (no g is removed before  $p^*$ )

1. 
$$f(g) = cost(g)$$
 and  $f(p^*) = cost(p^*)$ 

(i) 
$$f(\langle n_0, ..., n_k \rangle) = \operatorname{cost}(\langle n_0, ..., n_k \rangle) + h(n_k)$$
, and  $h(z) = 0$ 

2. f(p') < f(g)

(i) 
$$f(\langle s, ..., a \rangle) = cost(\langle s, ..., a \rangle) + h(a)$$

(ii) 
$$f(\langle s, ..., a, b, ..., z \rangle) = cost(\langle s, ..., a, b, ..., z \rangle) + h(z) = cost(\langle s, ..., a \rangle) + cost(\langle s, ..., z \rangle)$$

(iii) 
$$h(a) \leq \cot(\langle a, b, ..., z \rangle)$$

(iv) 
$$f(p') \le f(p^*) < f(g)$$

An admissible heuristic: h(n)  $f(\langle n_0, ..., n_k \rangle) = \cot(\langle n_0, ..., n_k \rangle) + h(n_k)$ A start node: sA goal node: z (i.e.,  $\gcd(z) = 1$ )
The optimal solution:  $p^* = \langle s, ..., a, b, ...z \rangle$ A prefix of the optimal solution:  $p' = \langle s, ..., a \rangle$ A suboptimal solution:  $g = \langle s, q, ..., z \rangle$ 

## A\* Completeness

# An admissible heuristic: h(n) $f(\langle n_0, ..., n_k \rangle) = \operatorname{cost}(\langle n_0, ..., n_k \rangle) + h(n_k)$ A start node: sA goal node: z (i.e., $\operatorname{goal}(z) = 1$ ) The optimal solution: $p^* = \langle s, ..., a, b, ...z \rangle$

A **prefix** of the optimal solution:  $p' = \langle s, ..., a \rangle$ 

A suboptimal solution:  $g = \langle s, q, ..., z \rangle$ 

#### **Proof part 2:** A\* is complete

- Every path that is removed from the frontier is only replaced by more-costly paths (why?)
- Since individual arc costs are larger than  $\epsilon$ , every path in the frontier will eventually have cost larger than k, for any finite k
  - . Every path with at least  $\frac{k}{\epsilon}$  arcs will have cost larger than k
- So every path in the frontier will eventually have cost larger than the cost of the optimal solution
- So the optimal solution will eventually be removed from the frontier
- Question: Why are we talking about costs and not f-values?

### Comparing Heuristics

- Suppose that we have two admissible heuristics,  $h_1$  and  $h_2$
- Suppose that for every node n,  $h_2(n) \ge h_1(n)$

**Question:** Which heuristic is better for search (with A\*)?

## Dominating Heuristics

#### **Definition:**

A heuristic  $h_2$  dominates a heuristic  $h_1$  if

- 1.  $\forall n : h_2(n) \ge h_1(n)$ , and
- 2.  $\exists n : h_2(n) > h_1(n)$ .

#### Theorem:

If  $h_2$  dominates  $h_1$ , and both heuristics are admissible, then A\* using  $h_2$  will never remove more paths from the frontier than A\* using  $h_1$ .

• i.e., better heuristics remove weakly fewer paths

#### **Question:**

Which admissible heuristic dominates all other admissible heuristics?

### A\* Analysis

For a search graph with *finite* maximum branch factor b and *finite* maximum path length m...

- 1. What is the worst-case space complexity of A\*? [A: O(m)] [B: O(mb)] [C:  $O(b^m)$ ] [D: it depends]
- 2. What is the worst-case time complexity of A\*? [A: O(m)] [B: O(mb)] [C:  $O(b^m)$ ] [D: it depends]

**Question:** If A\* has the same space and time complexity as least cost first search, then what is its advantage?

### Summary

- Domain knowledge can help speed up graph search
- Domain knowledge can be expressed by a heuristic function, which estimates the cost of a path to the goal from a node
- Admissible heuristics can be built from relaxations of the original problem
- Simple uses of heuristics do not guarantee improved performance
- A\* algorithm for use of admissible heuristics with guarantees