Alpha-Beta Search

CMPUT 355: Games, Puzzles, and Algorithms

| ecture Outline

1. Logistics & Recap
2. Pruning
3. Alpha-beta search

4. Examples

| ogistics

 Practice quiz questions #2:
 Now available
 Answers posted yesterday

* Quiz 1 marks available (average: approximately 14/20)
e Solutions have been posted

e Scans are on Canvas
* Any concerns about grading should be raised in a comment on the Canvas submission

e Quiz 2: Friday, Feb 6
e |n-class, full 50 minutes

* No need to email if you have to miss it;
up to 3 missed quizzes replaced by final exam automatically

* (Coverage: up to the end of last Friday's lecture (Sliding tiles & subgoals)
* Questions will be very similar to practice questions

Recap: Minimax Search

assume Pl plays at root
assume players alternate turns
def score(s):

return Pl's score at state s

def minimax(s): /// \' ;%>\\\

return score(s)
1f player(s) ==
return max{minimax(c) for
all ¢ 1n children(s)}
1f player(s) == 2:
return min{minimax(c) for
all ¢ 1n children(s)}

1T terminal(s):

m
4

d

]

Pruning

Plain minimax search visits every node in
depth-first order

But it's sometimes possible to avoid searching some subtrees based on
iInformation partway through the algorithm

Once we have explored the b's subtree and the first child of ¢, we know:
 minimax value of b is 5

 minimax value of ¢ is no larger than 3 (why?)

SBut a IS a max node!

* No matter what minimax value of ¢ turns out to be,
P1 will choose b instead (why?)

e SO minimax value of ais 5

* ...even though we haven't explored g or h yet
* those nodes were pruned
Alpha-beta search checks as it goes for these pruning opportunities

~N O

Ol

W —h

-~ @

D I

Alpha-Beta Search, informally

* Main idea: Learn enough about the current node guarantee that 2

minimax strategies never play here
5 W,

b
1. Current node is a max node, and / \

minimax value of current node is at least o, and
a min node earlier in the tree has a choice that guarantees less than o

 What can guarantee that?

~N Q
O D
W —h

2. Current node is a min node, and
minimax value of current node is less than /3, and

a max node earlier in the tree has a choice that guarantees more than f
e Question: Why is earlier in the tree important?

e At each stage, alpha-beta search tracks:
 «a: Highest value available on path from current node to root (including both current node and root)

[Lowest value available on path from current node to root (including both current node and root)

Alpha-Beta Search Pseudocode

def alphabeta(s, alpha, beta):
if terminal(s):
return score(s)
if player(s) = 1: # MAX player
val = -1nf
for ¢ in children(s):
ab = alphabeta(c, alpha, beta)
alpha = max(alpha, ab)
val = max(val, ab)
1f alpha >= beta:
return val # prune remaining children
1f player(s) = 2:
val = 1inf
for ¢ in children(s):
ab = alphabeta(c, alpha, beta)
beta = min(beta, ab)
val = min(val, ab)
1f alpha >= beta:
return val # prune remaining children
return val

Questions:

1.

Why do we initialize val
with inf or -inf?

shou

. With what arguments

d we call

alpr

abeta on the root

node”? (why?)

Why do we not return
updated alpha / beta
values as well as val?

Alpha-Beta Search Example

def alphabeta(s, alpha, beta):
if terminal(s): return >
return score(s) Y w a f
if player(s) = 1: # MAX player —00 506 o0
val = -1inf return 5 a return 3
for ¢ in children(s): v vaa B V aofp
ab = alphabeta(c, alpha, beta) 00 B00oc0o’ B0 55 300
alpha = max(alpha, ab) b
val = max(val, ab)
d/ \e
/ S

1T alpha >= beta:
return val # prune remaining children
1f player(s) = 2:

val = 1nf
for ¢ in children(s): Demo:
ab = alphabeta(c, alpha, beta) 5
beta = min(beta, ab) % cd abeta/

val = min(val, ab) % python3 alphabeta.py < tl.in

1T alpha >= beta:

return val # prune remaining children
return val

http://t1.in

Implementation: abeta/alphabeta. py

L, T,V,root = readtree()
alphabeta(9, T, V, root, float(' -inf'), float(inf'))

def alphabeta(d, T, V, v, alpha, beta): _if @ == d%2: # MAX node
if v in V. # V is the set of leaves /" val = float('-inf")
val = V|[v] for ¢ in T[v]:

return val y, ab = alphabeta(d+1, T, V, c, alpha, beta)
| _if ab > val: # have improved current mmax value
" alpha, val = ab, ab
T alpha >= beta:
“ " break
return val

Question: #else a MIN node
1. Why are we updating algha if val = float('inf')
ab > val instead of.ab > alpha¥ for ¢ in T[v]:
2. How does this line‘tell us we're'a MAX node? ab = alphabeta(a+1, T, V, ¢, alpha, beta)
if ab|<|val:

3. Why alpha >= betainstead.of.alpha > beta? = ab, ab

beta:

Alpha-Beta Search Example #2

/\
ik ik i)

Alpha-Beta Search Example #2

v a f Done!
8 8 ™ Return 8
v a f
6 -00 6 v a f a f
> 6 2 3 6 8
vV o

Summary

Minimax search examines every node In the search graph

Sut when an ancestor max node has an option that is higher than the current subtree's
value, we'll never reach this subtree (in optimal play)

Similarly, when an ancestor min node has an option that has lower than the current
subtree's value, then we'll never reach this subtree

S0, can stop exploring subtree once you prove that it has:
* |lower value than ancestor max node's best option, or
* higher value than ancestor min node's best option

Alpha-beta search checks before each recursive call whether subtree is optimally reachable
* Alpha: max value option for any ancestor max node (possibly including self)

* Beta: min value option for any ancestor min node (possibly including self)

