
Alpha-Beta Search
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Pruning
3. Alpha-beta search
4. Examples

Logistics
• Practice quiz questions #2:

• Now available
• Answers posted yesterday

• Quiz 1 marks available (average: approximately 14/20)
• Solutions have been posted
• Scans are on Canvas
• Any concerns about grading should be raised in a comment on the Canvas submission

• Quiz 2: Friday, Feb 6
• In-class, full 50 minutes
• No need to email if you have to miss it;

up to 3 missed quizzes replaced by final exam automatically
• Coverage: up to the end of last Friday's lecture (Sliding tiles & subgoals)
• Questions will be very similar to practice questions

Recap: Minimax Search
assume P1 plays at root
assume players alternate turns

def score(s):
 return P1's score at state s

def minimax(s):
 if terminal(s):
 return score(s)
 if player(s) == 1:
 return max{minimax(c) for
all c in children(s)}
 if player(s) == 2:
 return min{minimax(c) for
all c in children(s)}

t

j

a 
9

b 
2

k

c 
6

d 
1

p

f 
8

g 
3

q

h 
7

r w

m 
4

n

e 
5

Pruning
• Plain minimax search visits every node in

depth-first order
• But it's sometimes possible to avoid searching some subtrees based on

information partway through the algorithm
• Once we have explored the b's subtree and the first child of c, we know:

• minimax value of b is 5
• minimax value of c is no larger than 3 (why?)

• But a is a max node!
• No matter what minimax value of c turns out to be,

P1 will choose b instead (why?)
• So minimax value of a is 5
• ...even though we haven't explored g or h yet
• those nodes were pruned

• Alpha-beta search checks as it goes for these pruning opportunities

a

b c

d

7

e

5

f

3

g

?

h

?

5 ≤ 3

5

a

b c

d

7

e

5

f

3

g

?

h

?

≤ 75 ≤ 3

5

Alpha-Beta Search, informally
• Main idea: Learn enough about the current node guarantee that

minimax strategies never play here
• What can guarantee that?

1. Current node is a max node, and
minimax value of current node is at least , and
a min node earlier in the tree has a choice that guarantees less than

2. Current node is a min node, and
minimax value of current node is less than , and
a max node earlier in the tree has a choice that guarantees more than

• Question: Why is earlier in the tree important?
• At each stage, alpha-beta search tracks:

• : Highest value available on path from current node to root (including both current node and root)

• : Lowest value available on path from current node to root (including both current node and root)

α
α

β
β

α

β

a

b c

d

7

e

5

f

3

g

?

h

?

5 ≤ 3

5

Alpha-Beta Search Pseudocode
def alphabeta(s, alpha, beta):
 if terminal(s):
 return score(s)
 if player(s) = 1: # MAX player
 val = -inf
 for c in children(s):
 ab = alphabeta(c, alpha, beta)
 alpha = max(alpha, ab)
 val = max(val, ab)
 if alpha >= beta:
 return val # prune remaining children
 if player(s) = 2:
 val = inf
 for c in children(s):
 ab = alphabeta(c, alpha, beta)
 beta = min(beta, ab)
 val = min(val, ab)
 if alpha >= beta:
 return val # prune remaining children
 return val

Questions:

1. Why do we initialize val
with inf or -inf?

2. With what arguments
should we call
alphabeta on the root
node? (why?)

3. Why do we not return
updated alpha / beta
values as well as val?

Alpha-Beta Search Example
def alphabeta(s, alpha, beta):
 if terminal(s):
 return score(s)
 if player(s) = 1: # MAX player
 val = -inf
 for c in children(s):
 ab = alphabeta(c, alpha, beta)
 alpha = max(alpha, ab)
 val = max(val, ab)
 if alpha >= beta:
 return val # prune remaining children
 if player(s) = 2:
 val = inf
 for c in children(s):
 ab = alphabeta(c, alpha, beta)
 beta = min(beta, ab)
 val = min(val, ab)
 if alpha >= beta:
 return val # prune remaining children
 return val

a

b c

d

7

e

5

f

9

g

3

h

1

v

α β
−∞ −∞ ∞

v
7 - 7

α β
∞

v

α β
∞ −∞ ∞

v
5 - 5

α β
∞

v
5 5

α β
∞

v
 5

α β
∞ ∞
v
9 5 9

α βv
3 5 3

α β
return 5 return 3

return 5

Demo:
% cd abeta/

% python3 alphabeta.py < t1.in

http://t1.in

Implementation: abeta/alphabeta.py

Question:

1. Why are we updating alpha if
ab > val instead of ab > alpha?

2. How does this line tell us we're a MAX node?
3. Why alpha >= beta instead of alpha > beta?

Alpha-Beta Search Example #2

4 6 7 9 1 2 0 1 8 1 9 2

Alpha-Beta Search Example #2

4 6 7 1 2 8 1 9

v
- -

α β
∞ ∞ ∞

v

α β
∞ −∞ ∞

v

α β
−∞ −∞ ∞

v
4 4

α β
∞

v
6 6

α β
∞

v
6 - 6

α β
∞

v
- - 6

α β
∞ ∞

v
7 7 6

α β

v
6 6

α β
∞

v
 6

α β
∞ ∞

v
2 6

α β
∞

v
- 6

α β
∞ ∞

v
 6
α β

∞ ∞

v
- 6

α β
∞ ∞

v
8 8

α β
∞

v
8 6 8

α β

v
- 6 8

α β
∞

v
1 6

α β
∞

v
2 6

α β
∞

v
9 9 8

α β

Done!
Return 8

v
2 6 2

α β

v
8 8

α β
∞

Summary
• Minimax search examines every node in the search graph
• But when an ancestor max node has an option that is higher than the current subtree's

value, we'll never reach this subtree (in optimal play)
• Similarly, when an ancestor min node has an option that has lower than the current

subtree's value, then we'll never reach this subtree
• So, can stop exploring subtree once you prove that it has:

• lower value than ancestor max node's best option, or
• higher value than ancestor min node's best option

• Alpha-beta search checks before each recursive call whether subtree is optimally reachable
• Alpha: max value option for any ancestor max node (possibly including self)
• Beta: min value option for any ancestor min node (possibly including self)

