
Subgoals
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Subgoals in the sliding tile puzzle
3. Connected components: A subgoal-based proof

Logistics
• Practice quiz questions #2:

• Will be posted today (possibly early tomorrow)
• Answers will be posted following Tuesday (Feb 3)

• Quiz 1 marking:
• Still underway, should be done in the next couple of days

• Quiz 2: Next Friday, Feb 6
• In-class, full 50 minutes
• No need to email if you have to miss it;

up to 3 missed quizzes replaced by final exam automatically
• Coverage: up to the end of today's lecture
• Questions will be very similar to practice questions

Recap: Heuristic Search
• Heuristic: an estimate of the remaining "distance" (cost) from a node to the target

• Not always accurate!
• Admissible heuristic: guaranteed to be a lower bound on remaining cost

• i.e., a lower bound on how "bad" a given node is
• A* explores nodes in order of their estimated total distance:

• (distance from the source to) + (estimated distance from to target)
• First distance is real, second distance is computed by the heuristic

• Sliding tile specific heuristics:
• Misplaced tiles
• Taxicab distance

• These heuristics are good enough for A* to find solution to a solvable position in under 1s
• But unsolvable instances are still intractable

n n

4 × 4

Domain-Specific Information

• Heuristics are a way to exploit domain-specific information that is cheap to compute
• Function of the position rather than the graph structure

• Today: What if we solved for subgoals instead? ("baby steps")
• Approach:

1. Divide the problem into "easier" subproblems
2. Solved in order means that the overall problem is solved
3. Breadth-first search to solve each subproblem

Questions:

1. What makes this
domain-specific?

2. Will this be faster?
(why?)

3. Is this guaranteed to find
the shortest solution?

4. What could go wrong?

Example: Subgoals for puzzles2 × 3

• First method, solve two subproblems:
A. Get top row arranged correctly
B. Finish puzzle without touching top row

• Second method, solve two subproblems:
A. Get leftmost column arranged correctly
B. Finish puzzle without touching left column

? 2

3 ? 1

Initial

1 2 3

4 5

After B

1 2 3

? ?

After A

4 ?

? ? 1

Initial

1 ? ?

4 ?

After A

1 2 3

4 5

After B

Example: Subgoals for 3 × 3

A. Move the blank and to the top two rows
B. Make the top row correct using only the top two rows
C. Make the bottom two rows correct without touching

the top row

• e.g., by using a method from the previous
slide!

• Question: Is this method guaranteed to work? Why or
why not?

1,2,3

2 × 3

? ? 2
3 ? ?
? 1

3 2
? 1 ?
? ? ?

3 2
? 1 ?
? ? ?

1 2 3
? ?

? ? ?

1 2 3
4 ?

6 ? 5

1 2 3
4 5 6
7 8

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

3

Example Subgoals for 4 × 4
X. Place top, then left column, then solve :
 [[1,2,3,4],[5,9,13],[6,7,8,10,11,12,14,15]]
Y. Place one or two stones at a time:
 [[1],[2],[3,4],[5],[6],[7,8],[9,13],[10,14],[11,12,15]]
Z. Place first row in two steps, then second row, then solve bottom two

rows:
 [[1,2],[3,4],[5,6,7,8],[9,10,11,12,13,14,15]]
• Question: Which subgoal schedule will find solution fastest? (why?)
• Question: Which subgoal structure will find shortest solution? (why?)
• Demo: stile/15puzzle.py

3 × 3
1

2

1 2 3
4 5 6

7 8 9

1 2
3

4

Sliding Tiles: Is Even Parity Sufficient?

• Recall:
1. All solvable positions are even-parity  

Either inversions or inversions+row_height are even, depending on width
2. Solvable positions are a connected component

• But: Are all even-parity positions solvable?
• i.e., are the even-parity positions a connected component?

• We can use subgoals in a proof that all even-parity positions can be solved

1. Arrangements

• Read off the numbers on the tiles, skipping the blank
• Instead of going left-to-right on each row, go left-to-right,

then right-to-left, etc.
• This order is called an arrangement
• So the arrangement for the solved position is

1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12, 15, 14, 13
• Claim: you can move the blank to any position without

changing the arrangement (how?)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

2. "Passing Over" Tiles
Claim: Any tile can be moved backward or forward by two
positions in any arrangement, without changing the rest of the
arrangement

1. Move the blank along the arrangement to the tile's row
2. If necessary, rotate the two rows containing the tile and

its predecessors (successors) until the tile and its
predecessors (successors) are in an "elbow": four
squares that are sequential in the arrangement

3. Rotate the elbow to skip the tile forward or
backward by two positions

4. Undo the rotation in step 2

a b
c

b
a c

b
a c

b c
a

c
a b

a c
b

a c
b

a
b c

a
b c

b c
a

Subgoal: Single-tile placement
• If there are tiles, then the first tiles in the arrangement can be correctly placed

• (Placing each tile in order is a subgoal!)
• First, place the first tile by skipping it back 2 at a time
• It will either reach its home spot, or 1 spot to the right

• If it's in the home spot, we're done
• If it's one spot to the right, then skip the tile in the home spot forward by two

• Iteratively do the same for the second, third, etc.
• After the -nd tile (i.e., 13) has been placed, two cases:

• 14 and 15 are already in correct order: we have succeeded
• 14 and 15 are out of order: position is odd-parity (why?)

• Therefore, any even-parity position can be brought to the solved position,
so the even-parity positions are a connected component

• Question: What almost-identical argument shows that odd-parity positions are also
a connected component?

n n − 2

(n − 2)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Summary
• Some search problems can be solved more efficiently by solving intermediate subgoals

(instead of the whole problem at once)
• Shrinks the search space
• If guaranteed that all but last subgoals can be accomplished in any position, then

proving unsolvable can even be feasible
• Bad news: May not find the shortest solution
• More subgoals make solving faster, but may lead to worse solution
• Fewer subgoals give a better solution, but may take longer

• Extreme case: A single subgoal, which is the original goal
• Can use a subgoal-structured proof to show that all even positions are solvable in a

 sliding tile puzzlek × k

