
A* & Heuristic Search
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Map puzzle
3. A* search
4. Sliding tile heuristics

Logistics

• Practice quiz questions #2:
• Will be posted on Friday (Jan 30)
• Answers will be posted following Tuesday (Feb 3)

• Quiz 2: Next Friday, Feb 6
• In-class, full 50 minutes
• No need to email if you have to miss it;

up to 3 missed quizzes replaced by final exam automatically
• Questions will be very similar to practice questions

Recap: Breadth-First Search
• Exhaustively explores every possible position

• In order of number of moves from start position (shortest paths first)
• Good news: Will eventually find a solution (if it exists)
• Bad news: Might take until heat death of universe

• Example: Sliding tile puzzle

• BFS solves puzzle basically immediately

• We estimate that it would take about a year to solve (worst-case)
• But people solve puzzles of this size all the time!

• People explore "promising" neighbours before unpromising ones

3 × 3
4 × 4

Roadmap Example
A

B

Z

C

20

20

10

23

A

B

C

D

E

F

G

Z

10

10

15

12

15
10

21 8

• Want to get from A to Z
• As usual, edge between neighbours
• New: label each edge with a cost
• Goal: Path from A to Z with least cost
• Question: Is BFS guaranteed to return the least-cost path?

A* Pseudocode
item, priority
fringe = PQ()
fringe.add(start, 0)

Preceding location
parent = {}
parent[start] = None

Cost so far
cost = {}
cost[start] = 0

Have processed
done = {}

while not fringe.empty():
 current = fringe.remove() # min priority
 done.add(current)
 if current == target: break
 for next in nbrs(current):
 if next not in done:
 new_cost = cost[current] + wt(current, next)
 if next not in cost or new_cost < cost[next]:
 cost[next] = new_cost
 priority = new_cost + heuristic(target, next)
 fringe.add(next, priority)
 parent[next] = current

A* Pseudocode
while not fringe.empty():
 current = fringe.remove() # min priority
 done.add(current)
 if current == target: break
 for next in nbrs(current):
 if next not in done:
 new_cost = cost[current] + wt(current, next)
 if next not in cost or new_cost < cost[next]:
 cost[next] = new_cost
 priority = new_cost + heuristic(target, next)
 fringe.add(next, priority)
 parent[next] = current

Questions:

1. Why would we need to
update an existing cost?

2. What can go wrong if the
heuristic is an over-
estimate?

3. Is A* guaranteed to return
the least-cost solution?
(why or why not?)

Euclidean Heuristic
A

B

Z

C

20

20

10

23

A

B

C

D

E

F

G

Z

10

10

15

12

15
10

21 8

• A natural heuristic for the roadmap example is Euclidean distance ("as the crow flies")
• Guaranteed to be a lower bound on remaining cost (why?)
• Demo: stile/astar.py for the above problems (wg_pq2 and wg_pq respectively)

Node A B C Z
ETD 28 20 22 0

Node A B C D E F G Z
ETD 28 26 24 22 18 7 10 0

Sliding Tiles Heuristics

1. Inversions: Number of pairs out of order
• 8 inversions: {3,2}, {6,4}, {6,2}, {6,5}, {4,2}, {8,7}, {8,5}, {7,5}

2. Misplacements: Number of tiles in the wrong position
• 5 misplacements: 3, 6, 2, 8, 5
• Does not include the blank square's placement (why?)

3. Taxicab: Distance a tile must travel to get to correct position
• 1 + 1 + 1 + 2 + 2 = 7

1 3 6

4 2 8

7 5

1 3 6

4 2 8

7 5

1 3 6

4 2 8

7 5

Admissible Heuristics
Definition: A heuristic is admissible if for all nodes .
I.e., it must always be an underestimate of the remaining cost to the target.

h(n) h(n) ≤ cost(n, target) n

1. Inversions: Number of pairs out of order
2. Misplacements: Number of tiles in the wrong position
3. Taxicab: Distance a tile must travel to get to correct position

Questions:
1. Which of the above heuristics are admissible? Why?
2. Is there a way to make the inadmissible heuristic admissible?
3. Which heuristic is likely to be most accurate? Why?

Combining Heuristics

• Consider two admissible heuristics, and , and some node

• If , then is the more accurate estimate (why?)
• Some heuristics might be most accurate on different nodes

• If are both admissible, then:

1. is admissible, and

2. is at least as accurate as both of them

h1 h2 n

h2(n) > h1(n) h2(n)

h1, h2

h3(n) = max{h1(n), h2(n)}

h3

Demo: A* versus BFS for 4 × 4
• A solvable but hard instance:

• A* solves in under 1s:
 % time python3 15star.py -p 1 2 3 4 15 14 13 12 11 10 9 8 7 5 6  
 real 0m0.461s

• Legend says BFS is still searching to this day:
 % echo 4 4 1 2 3 4 15 14 13 12 11 10 9 8 7 5 6 0 | time python3 stp_search2.py  
 ...  
 12318701 iterations, level 23 has 10783780 nodes  
 23102481 iterations, level 24 has 19826318 nodes  
 ...

• Question: What would happen if we gave 15star.py an unsolveable position?

1 2 3 4

15 14 13 12

11 10 9 8

7 5 6

Summary
• Heuristic: an estimate of the remaining "distance" (cost) from a node to the target

• Not always accurate!
• Admissible heuristic: guaranteed to be a lower bound on remaining cost

• i.e., a lower bound on how "bad" a given node is
• A* explores nodes in order of their estimated total distance:

• (distance from the source to) + (estimated distance from to target)
• First distance is real, second distance is computed by the heuristic

• Sliding tile specific heuristics:
• Misplaced tiles
• Taxicab distance

• These heuristics are good enough for A* to find solution to a solvable position in under 1s
• But unsolvable instances are still intractable

n n

4 × 4

