A* & Heuristic Search

CMPUT 355: Games, Puzzles, and Algorithms

| ecture Outline

1. Logistics & Recap
2. Map puzzle

3. A” search

4. Sliding tile heuristics

| ogistics

* Practice quiz questions #2:

* Will be posted on Friday (Jan 30)

* Answers will be posted following Tuesday (Feb 3)
* Quiz 2: Next Friday, Feb 6

e |n-class, tull 50 Mminutes

* No need to emaill if you have to miss it;
up to 3 missed quizzes replaced by final exam automatically

e Questions will be very similar to practice questions

Recap: Breadth-First Search

—xXhaustively explores every possible position
* |n order of number of moves from start position (shortest paths first)
 Good news: Will eventually find a solution (if it exists)

 Bad news: Might take until heat death of universe

—xample: Sliding tile puzzle
» BFS solves 3 X 3 puzzle basically immediately

« We estimate that it would take about a year to solve 4 X 4 (worst-case)

* But people solve puzzles of this size all the time!

People explore "promising” neighbours before unpromising ones

Roadmap example

A 20 VA C 51 . L
F
10 10
20 513 o G
10 12
B C
10 A 15 D

Want to get from A to Z
As usual, edge between neighbours
New: label each edge with a cost

Goal: Path from A to Z with least cost

Question: Is BFS guaranteed to return the least-cost path”

A™ Pseudocode

1tem, priority while not fringe.empty():

fringe = PQO) current = fringe.remove() # min priority
fringe.add(start, 0) done.add(current)

Preceding location 1f current == target: break

parent = {} for next in nbrs(Ccurrent):

parent[start] = None 1f next not 1n done:

new_cost = cost[current] + wt(current, next)

Cost so far if next not in cost or new_cost < cost[next]:

cost = {}
cost[start] = © cost[next] = new_cost

priority = new_cost + heuristic(target, next)
Have processed fringe.add(next, priority)

done = {} parent[next] = current

A™ Pseudocode

while not fringe.empty(): Questions:
current = fringe.remove() # min priority 1. Why would we need to
done.add(current) update an existing cost?
1f current == target: break 2. What can go wrong if the
for next in nbrs(current): heuristic is an over-
1f next not 1in done: estimate”
new_cost = cost[current] + wt(current, next) 3. Is A* guaranteed 1o return
1f next not in cost or new_cost < cost[next]: the least-cost solution?
cost[next] = new_cost (why or why not?)

priority = new_cost + heuristic(target, next)
fringe.add(next, priority)
parent[next] = current

Fuclidean Heuristic

A 20 Z c o1 Z
o
10 10
20 o o -
10 12
T A 15)
Node A B C Z Node A B C D EFG Z
ETD 282022 0 ETD 2826242218710 0

* A natural heuristic for the roadmap example is Euclidean distance ("as the crow flies")
 (Guaranteed to be a lower bound on remaining cost (why?)

* Demo: stile/astar.py for the above problems (wg_pg2 and wg_pq respectively)

Sliding Tiles Heuristics

1. Inversions: Number of pairs out of order

 8inversions: {3,2}, {6,4}, {6,2}, {6,5}, {4,2}, {8,7}, {8,5}, {7,5}

2. Misplacements: Number of tiles In the wrong position

* 5 misplacements: 3, 6, 2, 8, 5

* Does not include the blank square's placement (why?)

3. Taxicab: Distance a tile must travel to get to correct position

e 1T+1+1+2+2=7

AdmMmissible Heuristics

Definition: A heuristic i(n) is admissible if h(n) < cost(n, target) for all nodes n.
l.e., It must always be an underestimate of the remaining cost to the target.

1. Inversions: Number of pairs out of order
2. Misplacements: Number of tiles In the wrong position

3. Taxicab: Distance a tile must travel to get to correct position

Questions:

1. Which of the above heuristics are admissible”? Why?

2. |s there a way to make the inadmissible heuristic admissible”
3. Which heuristic is likely to be most accurate”? \Why?

Combining Heuristics

» Consider two admissible heuristics, h; and h,, and some node n

e If hy(n) > h(n), then h,(n) is the more accurate estimate (why?)

e Some heuristics might be most accurate on different nodes

» If hy, h, are both admissible, then:
1. hy(n) = max{h,(n), h,(n)} is admissible, and

2. h, is at least as accurate as both of them

Demo:; A* versus BFS for 4 x 4

1 2 3 4

A solvable but hard instance: 15 14 13 19
11 10 9 8

A* solves In under 1s: 7 S5 6

% time python3 15star.py -p 1 2 3 4 15 14 13 12 11 10 9 8 7 5 6

real Um0 .401s

Legend says BFS is still searching to this day:
% echo 4412341514 131211109 8 756 0 | time python3 stp_searchl.py

12318701 1terations, level 23 has 10783780 nodes
23102481 1iterations, level 24 has 19826318 nodes

Question: \What would happen if we gave 15star.py an unsolveable position?

Summary

Heuristic: an estimate of the remaining "distance” (cost) from a node to the target
* Not always accurate!

Admissible heuristic: guaranteed to be a lower bound on remaining cost
* |.e., alower bound on how "bad" a given node is

A* explores nodes in order of their estimated total distance:

e (distance from the source to n) + (estimated distance from n to target)

e First distance is real, second distance is computed by the heuristic
Sliding tile specific heuristics:

* Misplaced tiles

e Jaxicab distance

These heuristics are good enough for A* to find solution to a solvable 4 X 4 position in under 1s

e But unsolvable instances are still intractable

