
A* & Heuristic Search
CMPUT 355: Games, Puzzles, and Algorithms



Lecture Outline
1. Logistics & Recap 
2. Map puzzle 
3. A* search 
4. Sliding tile heuristics



Logistics

• Practice quiz questions #2: 
• Will be posted on Friday (Jan 30) 
• Answers will be posted following Tuesday (Feb 3) 

• Quiz 2: Next Friday, Feb 6 
• In-class, full 50 minutes 
• No need to email if you have to miss it;  

up to 3 missed quizzes replaced by final exam automatically 
• Questions will be very similar to practice questions 



Recap: Breadth-First Search
• Exhaustively explores every possible position 

• In order of number of moves from start position (shortest paths first) 
• Good news: Will eventually find a solution (if it exists) 
• Bad news: Might take until heat death of universe 

• Example: Sliding tile puzzle 

• BFS solves  puzzle basically immediately  

• We estimate that it would take about a year to solve  (worst-case) 
• But people solve puzzles of this size all the time! 

• People explore "promising" neighbours before unpromising ones

3 × 3
4 × 4



Roadmap Example
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• Want to get from A to Z  
• As usual, edge between neighbours 
• New: label each edge with a cost 
• Goal: Path from A to Z with least cost 
• Question: Is BFS guaranteed to return the least-cost path?



A* Pseudocode
# item, priority
fringe = PQ()
fringe.add(start, 0)

# Preceding location
parent = {}
parent[start] = None

# Cost so far
cost = {}
cost[start] = 0

# Have processed 
done = {}

while not fringe.empty():
  current = fringe.remove() # min priority
  done.add(current)
  if current == target: break
  for next in nbrs(current):
    if next not in done:
      new_cost = cost[current] + wt(current, next)
        if next not in cost or new_cost < cost[next]:
          cost[next] = new_cost
          priority = new_cost + heuristic(target, next)
          fringe.add(next, priority)
          parent[next] = current



A* Pseudocode
while not fringe.empty():
  current = fringe.remove() # min priority
  done.add(current)
  if current == target: break
  for next in nbrs(current):
    if next not in done:
      new_cost = cost[current] + wt(current, next)
        if next not in cost or new_cost < cost[next]:
          cost[next] = new_cost
          priority = new_cost + heuristic(target, next)
          fringe.add(next, priority)
          parent[next] = current

Questions: 

1. Why would we need to 
update an existing cost? 

2. What can go wrong if the 
heuristic is an over-
estimate? 

3. Is A* guaranteed to return 
the least-cost solution? 
(why or why not?)



Euclidean Heuristic
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• A natural heuristic for the roadmap example is Euclidean distance ("as the crow flies") 
• Guaranteed to be a lower bound on remaining cost (why?) 
• Demo: stile/astar.py for the above problems (wg_pq2 and wg_pq respectively)

Node A B C Z
ETD 28 20 22 0

Node A B C D E F G Z
ETD 28 26 24 22 18 7 10 0



Sliding Tiles Heuristics

1. Inversions: Number of pairs out of order 
• 8 inversions: {3,2}, {6,4}, {6,2}, {6,5}, {4,2}, {8,7}, {8,5}, {7,5} 

2. Misplacements: Number of tiles in the wrong position  
• 5 misplacements: 3, 6, 2, 8, 5 
• Does not include the blank square's placement (why?) 

3. Taxicab: Distance a tile must travel to get to correct position 
• 1 + 1 + 1 + 2 + 2 = 7
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Admissible Heuristics
Definition: A heuristic  is admissible if  for all nodes .  
I.e., it must always be an underestimate of the remaining cost to the target.

h(n) h(n) ≤ cost(n, target) n

1. Inversions: Number of pairs out of order 
2. Misplacements: Number of tiles in the wrong position  
3. Taxicab: Distance a tile must travel to get to correct position

Questions: 
1. Which of the above heuristics are admissible? Why? 
2. Is there a way to make the inadmissible heuristic admissible? 
3. Which heuristic is likely to be most accurate? Why?



Combining Heuristics

• Consider two admissible heuristics,  and , and some node  

• If , then  is the more accurate estimate (why?) 
• Some heuristics might be most accurate on different nodes 

• If  are both admissible, then: 

1.  is admissible, and 

2.  is at least as accurate as both of them

h1 h2 n

h2(n) > h1(n) h2(n)

h1, h2

h3(n) = max{h1(n), h2(n)}

h3



Demo: A* versus BFS for 4 × 4
• A solvable but hard instance: 

• A* solves in under 1s: 
    % time python3 15star.py -p 1  2  3  4 15 14 13 12 11 10 9 8 7 5 6  
  real    0m0.461s

• Legend says BFS is still searching to this day: 
    % echo 4 4 1 2 3 4 15 14 13 12 11 10 9 8 7 5 6 0 | time python3 stp_search2.py  
  ...  
  12318701 iterations, level 23 has 10783780 nodes  
  23102481 iterations, level 24 has 19826318 nodes  
  ...

• Question: What would happen if we gave 15star.py an unsolveable position?
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Summary
• Heuristic: an estimate of the remaining "distance" (cost) from a node to the target 

• Not always accurate! 
• Admissible heuristic: guaranteed to be a lower bound on remaining cost 

• i.e., a lower bound on how "bad" a given node is 
• A* explores nodes in order of their estimated total distance:  

• (distance from the source to ) + (estimated distance from  to target) 
• First distance is real, second distance is computed by the heuristic 

• Sliding tile specific heuristics:  
• Misplaced tiles 
• Taxicab distance 

• These heuristics are good enough for A* to find solution to a solvable  position in under 1s 
• But unsolvable instances are still intractable

n n

4 × 4


