

Predicting BFS Runtime

CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline

1. Inversions and solvability
2. Estimates of runtime in sliding tile problem

Recap: Inversions

Definition: A sliding tile puzzle has m **inversions** if there are m distinct unordered pairs of numbers $\{x, y\}$ such that $x < y$ but x appears later than y when the numbers of the puzzle are written row-by-row.

2, 3, 1		
{1,2}: 2 before 1		
{1,3}: 3 before 1		
{2,3}: 2 before 3		

2 inversions

1, 3, 2		
{1,2}: 1 before 2		
{1,3}: 1 before 3		
{2,3}: 3 before 2		

1 inversion

3, 2, 1		
{1,2}: 2 before 1		
{1,3}: 3 before 1		
{2,3}: 3 before 2		

3 inversions

Inversions and Solvability: Odd k

- Horizontal slides don't change the number of inversions at all (**why?**)
- Vertical slides "jump" a number n over $k - 1$ **skipped** numbers
 - All pairs that do not contain n have same inversion value (inverted or not) after slide
 - All pairs that include n and a **skipped** number have their inversion value flipped
- **If k is odd:**
 - Solved position has 0 inversions (even)
 - Starting from solved position, every move **flips** an even number of inversions
 - Flipping even number of inversions means number is still even
 - **Every solvable position must have an even number of inversions when k is odd**

1,2,3,4,**5**,7,8,6

1	2	3
4	5	
7	8	6

1,2,3,4,**5**,7,8,6

1	2	3
4		5
7	8	6

1,2,3,4,5,**7**,8,6

1	2	3
4	5	
7	8	6

1,2,3,4,5,**6**,7,8

1	2	3
4	5	6
7	8	

1,2,3,4,**8**,5,7,6

1	2	3
4	8	5
7		6

1,2,3,4,**5**,7,8,6

1	2	3
4		5
7	8	6

Inversions and Solvability: Even k

If k is **even**:

- Vertical slides "jump" a number n over $k - 1$ **skipped** numbers
 - So each vertical slide flips an **odd** number of inversions
- **Solved** position has an even number of inversions
- After **odd** number of vertical slides, position has **opposite** inversion parity (**why?**)
- After **even** number of vertical slides, position has same inversion parity (**why?**)
- If the blank is an **odd** number of rows away from bottom (call that "**blank height**") in a solvable position, inversion parity must be **odd** (**why?**)
 - Similarly, **even** number of rows away means **even** inversion parity
- **In every solvable position, inversion parity must equal parity of blank height**
 - Equivalently: parity of (# inversions) + (blank height) must be **even**

2, 3, 1
{1,2}: 2 before 1
{1,3}: 3 before 1
{2,3}: 2 before 3

2	3
1	

2 inversions
blank height = 0

3, 2, 1
{1,2}: 2 before 1
{1,3}: 3 before 1
{2,3}: 3 before 2

3	
2	1

3 inversions
blank height = 1

Necessary vs. Sufficient

Proposition: In any $k \times k$ sliding tile puzzle:

1. If k is odd, then in any solvable position the **number of inversions** must be even
2. If k is even, then in any solvable position the **number of inversions plus the blank height** must be even.

- We have proven that **if** the position is **solvable**,
then parity (of either inversions or inversions plus blank height) must be **even**
- We have therefore proven that
if the parity (of either inversions or inversion plus blank height) is **odd**,
then the position is **not solvable (why?)**
- We have **not** proven that **if** the parity is **even**, **then** the position is **solvable**
 - Equivalently: have not proven that even-parity positions are a **connected component** of the search space
 - This is **actually true**, but the proof is a bit involved

Estimating Runtime

- Last time we used number of positions to guess about feasibility:
 - 3×3 puzzle has $9! = 362,880$ unique positions
 - seems OK
 - 4×4 puzzle has $16! \approx 2.092 \times 10^{13} \approx 20$ trillion unique positions
 - seems bad?
- **Demo:** time `stile/stp_search2.py` on 3×3 input and 4×4
- **Question:** Can we estimate how much runtime 4×4 would require?
 1. Estimate ratio of runtimes for unknown runtime and known runtime (e.g., 4×4 input vs. 3×3 input)
 2. Multiply ratio by known runtime

Runtime of BFS

- BFS will have to explore every position in the worst case scenario
- So ratio of **number of positions** seems like a good start

$$\frac{16!}{9!} = 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times 10 = 57,657,600$$

- (57 million seconds is about **1 year and ten months**)
- Worst-case runtime of breadth-first search is roughly proportional to number of **edges** in the search graph
 - So ratio of **number of edges** is actually a **better estimate**
- **Question:** Is this approach likely to give us a usable estimate?

Validating the Ratio of Edges Approach

Plan:

1. Compute **number of edges** for 3×3 and 2×5 inputs
2. Multiply **ratio** $\frac{\# \text{ edges in } 2 \times 5}{\# \text{ edges in } 3 \times 3}$ by the **runtime** for 3×3 input
3. Compare the prediction to the **actual** runtime for 2×5 input
4. If good approximation:
 1. compute number of edges for 4×4 input
 2. Multiply 2×5 runtime by ratio of edges $\frac{\# \text{ edges in } 4 \times 4}{\# \text{ edges in } 2 \times 5}$

Question: Why use 2×5 instead of 4×4 ?

Number of Neighbours for 3×3

1	2	3
4	5	6
7	8	

Position A

1	2	3
4	5	6
7		8

Position B

1	2	3
4		6
7	5	8

Position C

- How many **neighbours** does Position A have?
 - How many positions with the **same number ordering** have **2 neighbours**?
- How many neighbours does Position B have?
 - How many positions with the same number ordering have **3 neighbours**?
- How many neighbours does Position C have?
 - How many positions with the same number ordering have **4 neighbours**?

Number of Edges for 3×3

1	2	3
4	5	6
7	8	

1	2	3
4	5	6
7		8

1	2	3
4		6
7	5	8

- Each number orderings corresponds to 9 different positions
 - 1/9 positions have **4 neighbours**
 - 4/9 positions have **3 neighbours**
 - 4/9 positions have **2 neighbours**
- Total number of **neighbours**:

$$\begin{aligned} & (9! \text{ positions}) \times \frac{1}{9}(4 \text{ neighbours}) + (9! \text{ positions}) \times \frac{4}{9}(3 \text{ neighbours}) + (9! \text{ positions}) \times \frac{4}{9}(2 \text{ neighbours}) \\ &= (9! \text{ positions}) \times \left(\frac{1}{9}(4 \text{ neighbours}) + \frac{4}{9}(3 \text{ neighbours}) + \frac{4}{9}(2 \text{ neighbours}) \right) \\ &= 967,680 \text{ neighbours} \\ 967,680/2 &= 483,840 \text{ edges} \end{aligned}$$

Number of Neighbours for 2×5

1	2	3	4	5
6	7	8	9	

Position A

1	2	3	4	5
6	7	8		9

Position B

- How many **neighbours** does Position A have?
 - How many positions with the **same number ordering** have **2 neighbours**?
- How many neighbours does Position B have?
 - How many positions with the same number ordering have **3 neighbours**?

Number of Edges for 2×5

1	2	3	4	5
6	7	8	9	

1	2	3	4	5
6	7	8		9

- Each number orderings corresponds to 10 different positions
 - 4/10 positions have **2 neighbours**
 - 6/10 positions have **3 neighbours**
- Total number of **neighbours**:

$$\begin{aligned} & (10! \text{ positions}) \times \frac{4}{10} (\text{2 neighbours}) + (10! \text{ positions}) \times \frac{6}{10} (\text{3 neighbours}) \\ &= (10! \text{ positions}) \times \underbrace{\left(\frac{4}{10} (\text{2 neighbours}) + \frac{6}{10} (\text{3 neighbours}) \right)}_{=2.6} \end{aligned}$$

= 9,434,880 neighbours

$9,434,880/2 = 4,717,440$ edges

Validate Prediction

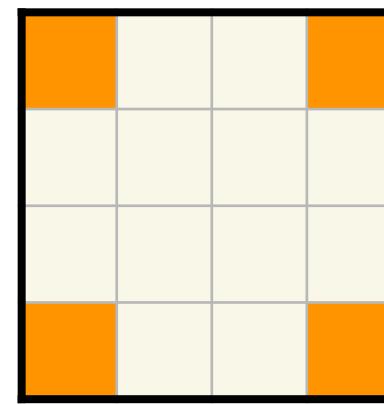
- Ratio: $\frac{4,717,440 \text{ edges in } 2 \times 5}{483,840 \text{ edges in } 3 \times 3} = 9.75$

```
% time python3 stp_search2.py < in/33no > /dev/null
real    0m0.468s
user    0m0.385s
sys     0m0.016s
```

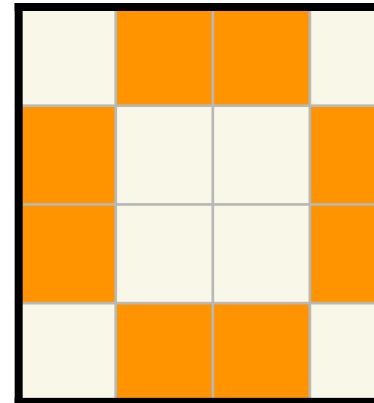
- Actual 3×3 runtime: $0.468s$
- Estimated 2×5 runtime:
 $9.75 \times 0.468s = 4.563s$
- Actual 2×5 runtime: $4.327s$

```
% time python3 stp_search2.py < in/25.0 > /dev/null
real    0m4.327s
user    0m4.151s
sys     0m0.075s
```

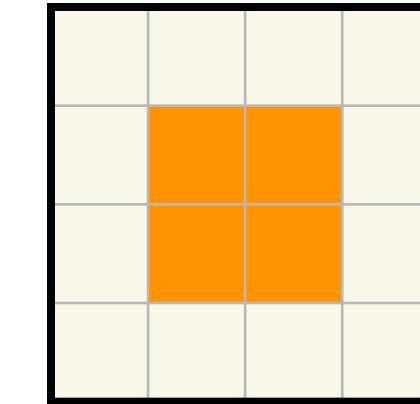
Number of Edges in 4×4



2 neighbours



3 neighbours



4 neighbours

$$\frac{(16! \text{ positions}) \times \left(\frac{4}{16}(2 \text{ neighbours}) + \frac{8}{16}(3 \text{ neighbours}) + \frac{4}{16}(4 \text{ neighbours}) \right)}{=3} = \frac{16! \times 3}{2} \text{ edges}$$

Ratio:

$$\frac{16! \times 3 \text{ neighbours for } 4 \times 4}{10! \times 2.6 \text{ neighbours for } 2 \times 5} = 16 \times 15 \times 14 \times 13 \times 12 \times 11 \times \frac{3}{2.6} = 652,800$$

Prediction: $652,800 \times 4.327s = 28,786,665s \approx \text{(11 months)}$

Summary

- **Inversions:**
 - Number of pairs of **numbers** that are **out of order** (ignoring blank)
 - For **odd** k , a $k \times k$ position is **solvable** only if it has an **even number** of inversions
 - For **even** k : (steps from bottom row + inversions) must be even
- **Runtime:**
 - BFS runtime is roughly proportional to **number of edges** in search graph
 - Can estimate runtime for large instances as follows:
 1. Compute **ratio** $R = \frac{\text{\# edges in large instance}}{\text{\# edges in smaller instance}}$
 2. Run smaller instance to get **runtime** T
 3. Estimate that larger instance will take RT
(i.e., R times longer than smaller instance)