Predicting BFS Runtime

CMPUT 355: Games, Puzzles, and Algorithms

| ecture Outline

1. Inversions and solvability

2. Estimates of runtime In sliding tile problem

Recap: Inversions

Definition: A sliding tile puzzle has m inversions if there are m distinct unordered

pairs of numbers {x, y} such that x < y but x appears later than y when the
numbers of the puzzle are written row-by-row.

1

2, 3, 1,3,2 3, 2,1

{(1,2}: 2 before 1 K {1,2}: 1 before 2 {1,2}: 2 before 1 K
{1,3}: 3before 1 XK {1,3}: 1 before 3 {1,3}: 3before 1 XK
{2,3}: 2 before 3 {2,3}: 3before 2 XK {2,3): 3before 2 XK
2 Inversions 1 Inversion 3 Inversions

Inversions and Solvability: Odd k

e Horizontal slides don't change the number of inversions at all
(why?)

 Vertical slides "jump" a number n over k — 1 skipped numbers

e All pairs that do not contain 7z have same inversion value
(inverted or not) after slide

e All pairs that include n and a skipped number have their
inversion value flipped

e If kis odd:

e Solved position has O inversions (even)

e Starting from solved position, every move flips an even number
of Inversions

* Flipping even number of inversions means number Is still even

 Every solvable position must have an even number of
inversions when k is odd

1,2,3,4,5,7,8,6

1 2 3
4 5
/ 8 0

1,2,3,4,5,7,8,6

1,2,3,4,5,7,8,6

1 2 3
4 S
/ 8 0

1 2 3
4 5
/ 8 6

1,2,3,4,5,6,7,8

1,2,3,4,8,5,7,6

1 2 3
4 5 6
/7 8

1 2 3
4 8 5
/ 6

1,2,3,4,5,7,8,6

1 2 3
4 5
/ 8 ©

Inversions and Solvability: Even k

If k is even:

\ertical slides "jump" a number 7 over k — 1 skipped numbers

* SO0 each vertical slide flips an odd number of inversions
Solved position has an even number of inversions

After odd number of vertical slides, position has opposite inversion parity
(why?)

After even number of vertical slides, position has same inversion parity (why?)

If the blank is an odd number of rows away from bottom (call that
"blank height") in a solvable position, inversion parity must be odd (why?)

o Similarly, even number of rows away means even inversion parity

In every solvable position,
Inversion parity must equal parity of blank height

* Equivalently: parity of (# inversions) + (blank height) must be even

3,

2} 2 before 1
,3}: 3 before 1
{2,3}: 2 before 3
2 Inversions
blank height =0

2,

2} 2 before 1
,3}: 3 before 1
{2,3}: 3 before 2
3 inversions
blank height = 1

y. y. p.
S e "o

Necessary vs. Sufficient

Proposition: In any k& X k sliding tile puzzle:
1. If kis odd, then in any solvable position the number of inversions must be even

2. If kis even, then in any solvable position the number of inversions plus the
blank height must be even.

* We have proven that if the position is solvable,
then parity (of either inversions or inversions plus blank height) must be even

* We have therefore proven that
if the parity (of either inversions or inversion plus blank height) is odd,
then the position is not solvable (why?)

* We have not proven that if the parity is even, then the position is solvable

 Equivalently: have not proven that even-parity positions are a connected component of the
search space

* Thisis actually true, but the proof is a bit involved

=stimating Runtime

* [ast time we used number of positions to guess about feasibility:

e 3 X 3 puzzle has 9! = 362,880 unique positions

e seems OK

e 4 X 4 puzzle has 16! ~ 2.092 x 10! ~ 20 trillion unique positions

e seems bad?

« Demo: time stile/stp_search2.py on 3 X 3 input and 4 X 4

e Question: Can we estimate how much runtime 4 X 4 would require?

1. Estimate ratio of runtimes for unknown runtime and known runtime
e.9., 4 X 4 input vs. 3 X 3 input)

2. Multiply ratio by known runtime

Runtime of BFS

BFS will have to explore every position in the worst case scenario

So ratio of number of positions seems like a good start

16!
—=16X15x14%x 13X 12x 11 X 10 =57,657,600

O!

e (57 million seconds is about 1 year and ten months)

Worst-case runtime of breadth-first search is roughly proportional to number of
edges in the search graph

* S0 ratio of number of edges is actually a better estimate

Question: Is this approach likely to give us a usable estimate”

Validating the Ratio of Edges Approach

Plan:

1. Compute number of edges for 3 X 3 and 2 X 5 inputs

| - #edgesin2 X5 _ |
2. Multiply ratio by the runtime for 3 X 3 input

edgesin 3 X 3

3. Compare the prediction to the actual runtime for 2 X S input

4., If good approximation:

1. compute number of edges for 4 X 4 input

edgesin4 X 4
edgesin2 X 5

2. Multiply 2 X 5 runtime by ratio of edges

Question: Why use 2 X 5 instead of 4 X 47?

Number of Neighbours for 3 X 3

1 2 3 1 2 3 1 2 3

4 5 6 4 5 6 4 6

14 8 14 8 14 S 3
Position A Position B Position C

« How many neighbours does Position A have”

 How many positions with the same number ordering have 2 neighbours?

 How many neighbours does Position B have?

 How many positions with the same number ordering have 3 neighbours?

 How many neighbours does Position C have?

 How many positions with the same number ordering have 4 neighbours?

Number of Edges for 3 X 3

1 2 3 12 3 1 2 3
4 5 6 4 506 4 6
/[8 I4 3 / 5 8

e Each number orderings corresponds to 9 different positions
* 1/9 positions have 4 neighbours
* 4/9 positions have 3 neighbours
* 4/9 positions have 2 neighbours

* Jotal number of neighbours:

| 4 4
(9! positions) X 5(4 neighbours) + (9! positions) X 5(3 neighbours) + (9! positions) X 6(2 neighbours)
| 4 4
= (9! positions) X (5(4 neighbours) + 6(3 neighbours) + 6(4 neighbours))

= 967,680 neighbours
967,680/2 = 483, 840 edges

Number of Neighbours for 2 X 3

1 2 3 4 5 1 2 3 4 5
6 / 8 9 6 ! 3 9
Position A Position B

« How many neighbours does Position A have?
 How many positions with the same number ordering have 2 neighbours”?
 How many neighbours does Position B have?

 How many positions with the same number ordering have 3 neighbours”

Number of Edges for 2 X 5

o) —
~N N
o W
o) =
~N DN
o W
O O

* Each number orderings corresponds to 10 different positions
* 4/10 positions have 2 neighbours
 ©6/10 positions have 3 neighbours

* Jotal number of neighbours:

4 6
(10! positions) X —(2 neighbours) + (10! positions) X —(3 neighbours)

10 10
4 6
= (10! positions) X { —(2 neighbours) 4 (3 neighbours)
10 10
~2.6
= 9,434,880 neighbours

9,434,880/2 = 4,717,440 edges

Validate Prediction

% time python3 stp_search2.py < in/33no > /dev/null

4,717,440 edgesin2 X 5 B real OmO.468s

= O0.75

483,840 edges in3 X3 SysS Omo .016s
Actual 3 X 3 runtime: 0.468s

Ratio:

Cstimated 2 X 5 runtime:

975 X 04685 — 4563S % time python3 stp_search2.py < in/25.0 > /dev/null
. _ real om4 .327s
Actual 2 X 5 runtime: 4.3277s o o ere

SysS OmB.0/5s

Number of Edges in 4 X 4

2 neighbours 3 heighbours 4 neighbours

4 8 4
(16! positions) X (1—6(2 neighbours) + 1—6(3 neighbours) + 1_6(4 neighbours))

-3
16! %X 3
= edges

2

Ratio:

16! X 3 neighbours for 4 X 4 3
=]16X 15X 14X 13X 12X 11 Xx— = 652,800
10! x 2.6 neighbours for 2 X 5 2.6

Prediction: 652,800 X 4.327s = 28,786,665s ~ (11 months)

Summary

e |nversions:

 Number of pairs of numbers that are out of order (ignoring blank)
« Forodd k, a k X k position is solvable only if it has an even number of inversions

« For even k: (steps from bottom row + inversions) must be even
 Runtime:
 BFS runtime is roughly proportional to number of edges in search graph

e (Can estimate runtime for large instances as follows:
edges In large instance

1. Compute ratio R =

edges in smaller instance

2. Run smaller instance to get runtime 1

3. Estimate that larger instance will take RT
(i.e., R times longer than smaller instance)

