
Predicting BFS Runtime
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline

1. Inversions and solvability
2. Estimates of runtime in sliding tile problem

Recap: Inversions
Definition: A sliding tile puzzle has inversions if there are distinct unordered
pairs of numbers such that but appears later than when the
numbers of the puzzle are written row-by-row.

m m
{x, y} x < y x y

2 3
1

2, 3, 1
{1,2}: 2 before 1 ❌
{1,3}: 3 before 1 ❌
{2,3}: 2 before 3 ✅
2 inversions

3
2 1

3, 2, 1
{1,2}: 2 before 1 ❌
{1,3}: 3 before 1 ❌
{2,3}: 3 before 2 ❌
3 inversions

1 3
2

1, 3, 2
{1,2}: 1 before 2 ✅
{1,3}: 1 before 3 ✅
{2,3}: 3 before 2 ❌
1 inversion

Inversions and Solvability: Odd k
• Horizontal slides don't change the number of inversions at all

(why?)

• Vertical slides "jump" a number over skipped numbers
• All pairs that do not contain have same inversion value

(inverted or not) after slide
• All pairs that include and a skipped number have their

inversion value flipped

• If is odd:
• Solved position has 0 inversions (even)
• Starting from solved position, every move flips an even number

of inversions
• Flipping even number of inversions means number is still even
• Every solvable position must have an even number of

inversions when is odd

n k − 1
n

n

k

k

1 2 3
4 5
7 8 6

1,2,3,4,5,7,8,6

1 2 3
4 5
7 8 6

1,2,3,4,5,7,8,6

1 2 3
4 5
7 8 6

1 2 3
4 5 6
7 8

1,2,3,4,5,7,8,6 1,2,3,4,5,6,7,8

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

1,2,3,4,8,5,7,6 1,2,3,4,5,7,8,6

Inversions and Solvability: Even k
If is even:

• Vertical slides "jump" a number over skipped numbers
• So each vertical slide flips an odd number of inversions

• Solved position has an even number of inversions
• After odd number of vertical slides, position has opposite inversion parity

(why?)
• After even number of vertical slides, position has same inversion parity (why?)
• If the blank is an odd number of rows away from bottom (call that

"blank height") in a solvable position, inversion parity must be odd (why?)
• Similarly, even number of rows away means even inversion parity

• In every solvable position, 
inversion parity must equal parity of blank height

• Equivalently: parity of (# inversions) + (blank height) must be even

k
n k − 1

2 3
1

2, 3, 1
{1,2}: 2 before 1 👎
{1,3}: 3 before 1 👎
{2,3}: 2 before 3 ✅
2 inversions
blank height = 0

3
2 1

3, 2, 1
{1,2}: 2 before 1 👎
{1,3}: 3 before 1 👎
{2,3}: 3 before 2 👎
3 inversions
blank height = 1

Necessary vs. Sufficient
Proposition: In any sliding tile puzzle:

1. If is odd, then in any solvable position the number of inversions must be even

2. If is even, then in any solvable position the number of inversions plus the
blank height must be even.

k × k

k

k

• We have proven that if the position is solvable,
then parity (of either inversions or inversions plus blank height) must be even

• We have therefore proven that
if the parity (of either inversions or inversion plus blank height) is odd,
then the position is not solvable (why?)

• We have not proven that if the parity is even, then the position is solvable
• Equivalently: have not proven that even-parity positions are a connected component of the

search space
• This is actually true, but the proof is a bit involved

Estimating Runtime
• Last time we used number of positions to guess about feasibility:

• puzzle has unique positions
• seems OK

• puzzle has unique positions
• seems bad?

• Demo: time stile/stp_search2.py on input and

• Question: Can we estimate how much runtime would require?

1. Estimate ratio of runtimes for unknown runtime and known runtime
(e.g., input vs. input)

2. Multiply ratio by known runtime

3 × 3 9! = 362,880

4 × 4 16! ≈ 2.092 × 1013 ≈ 20 trillion

3 × 3 4 × 4
4 × 4

4 × 4 3 × 3

Runtime of BFS
• BFS will have to explore every position in the worst case scenario
• So ratio of number of positions seems like a good start

• (57 million seconds is about 1 year and ten months)
• Worst-case runtime of breadth-first search is roughly proportional to number of

edges in the search graph
• So ratio of number of edges is actually a better estimate

• Question: Is this approach likely to give us a usable estimate?

16!
9!

= 16 × 15 × 14 × 13 × 12 × 11 × 10 = 57,657,600

Validating the Ratio of Edges Approach
Plan:

1. Compute number of edges for and inputs

2. Multiply ratio by the runtime for input

3. Compare the prediction to the actual runtime for input
4. If good approximation:

1. compute number of edges for input

2. Multiply runtime by ratio of edges

3 × 3 2 × 5
edges in 2 × 5
edges in 3 × 3

3 × 3

2 × 5

4 × 4

2 × 5
edges in 4 × 4
edges in 2 × 5

Question: Why use instead of ?2 × 5 4 × 4

Number of Neighbours for 3 × 3

• How many neighbours does Position A have?
• How many positions with the same number ordering have 2 neighbours?

• How many neighbours does Position B have?
• How many positions with the same number ordering have 3 neighbours?

• How many neighbours does Position C have?
• How many positions with the same number ordering have 4 neighbours?

1 2 3

4 5 6

7 8

Position A

1 2 3

4 5 6

7 8

Position B

1 2 3

4 6

7 5 8

Position C

Number of Edges for 3 × 3

• Each number orderings corresponds to 9 different positions
• 1/9 positions have 4 neighbours
• 4/9 positions have 3 neighbours
• 4/9 positions have 2 neighbours

• Total number of neighbours:

 neighbours

(9! positions) ×
1
9

(4 neighbours) + (9! positions) ×
4
9

(3 neighbours) + (9! positions) ×
4
9

(2 neighbours)

= (9! positions) × (1
9

(4 neighbours) +
4
9

(3 neighbours) +
4
9

(4 neighbours))
= 967,680

967,680/2 = 483, 840 edges

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 6
7 5 8

Number of Neighbours for 2 × 5

• How many neighbours does Position A have?
• How many positions with the same number ordering have 2 neighbours?

• How many neighbours does Position B have?
• How many positions with the same number ordering have 3 neighbours?

Position A

1 2 3 4 5

6 7 8 9

Position B

1 2 3 4 5

6 7 8 9

Number of Edges for 2 × 5

• Each number orderings corresponds to 10 different positions
• 4/10 positions have 2 neighbours
• 6/10 positions have 3 neighbours

• Total number of neighbours:

 neighbours

(10! positions) ×
4
10

(2 neighbours) + (10! positions) ×
6
10

(3 neighbours)

= (10! positions) × (4
10

(2 neighbours) +
6
10

(3 neighbours))
=2.6

= 9,434,880
9,434,880/2 = 4, 717, 440 edges

1 2 3 4 5
6 7 8 9

1 2 3 4 5
6 7 8 9

Validate Prediction

• Ratio:

• Actual runtime:

• Estimated runtime:

• Actual runtime:

4,717,440 edges in 2 × 5
483,840 edges in 3 × 3

= 9.75

3 × 3 0.468s

2 × 5
9.75 × 0.468s = 4.563s

2 × 5 4.327s

Number of Edges in 4 × 4

Ratio:

Prediction:

(16! positions) × (4
16

(2 neighbours) +
8
16

(3 neighbours) +
4
16

(4 neighbours))
=3

=
16! × 3

2
 edges

16! × 3 neighbours for 4 × 4
10! × 2.6 neighbours for 2 × 5

= 16 × 15 × 14 × 13 × 12 × 11 ×
3

2.6
= 652,800

652,800 × 4.327s = 28,786,665s ≈ (11 months)

2 neighbours 3 neighbours 4 neighbours

Summary
• Inversions:

• Number of pairs of numbers that are out of order (ignoring blank)

• For odd , a position is solvable only if it has an even number of inversions

• For even : (steps from bottom row + inversions) must be even
• Runtime:

• BFS runtime is roughly proportional to number of edges in search graph
• Can estimate runtime for large instances as follows:

1. Compute ratio

2. Run smaller instance to get runtime
3. Estimate that larger instance will take

(i.e., times longer than smaller instance)

k k × k

k

R =
edges in large instance

edges in smaller instance
T
RT

R

