
Predicting BFS Runtime
CMPUT 355: Games, Puzzles, and Algorithms



Lecture Outline

1. Inversions and solvability 
2. Estimates of runtime in sliding tile problem



Recap: Inversions
Definition: A sliding tile puzzle has  inversions if there are  distinct unordered 
pairs of numbers  such that  but  appears later than  when the 
numbers of the puzzle are written row-by-row.

m m
{x, y} x < y x y

2 3
1

2, 3, 1 
{1,2}: 2 before 1    ❌ 
{1,3}: 3 before 1    ❌ 
{2,3}: 2 before 3    ✅ 
2 inversions

3
2 1

3, 2, 1 
{1,2}: 2 before 1    ❌ 
{1,3}: 3 before 1    ❌ 
{2,3}: 3 before 2    ❌ 
3 inversions

1 3
2

1, 3, 2 
{1,2}: 1 before 2    ✅ 
{1,3}: 1 before 3    ✅ 
{2,3}: 3 before 2    ❌ 
1 inversion



Inversions and Solvability: Odd k
• Horizontal slides don't change the number of inversions at all 

(why?) 

• Vertical slides "jump" a number  over  skipped numbers 
• All pairs that do not contain  have same inversion value 

(inverted or not) after slide 
• All pairs that include  and a skipped number have their 

inversion value flipped 

• If  is odd:  
• Solved position has 0 inversions (even) 
• Starting from solved position, every move flips an even number 

of inversions 
• Flipping even number of inversions means number is still even 
• Every solvable position must have an even number of 

inversions when  is odd
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4 5
7 8 6

1 2 3
4 5 6
7 8
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1 2 3
4 8 5
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1 2 3
4 5
7 8 6

1,2,3,4,8,5,7,6 1,2,3,4,5,7,8,6



Inversions and Solvability: Even k
If  is even: 

• Vertical slides "jump" a number  over  skipped numbers 
• So each vertical slide flips an odd number of inversions 

• Solved position has an even number of inversions 
• After odd number of vertical slides, position has opposite inversion parity 

(why?) 
• After even number of vertical slides, position has same inversion parity (why?) 
• If the blank is an odd number of rows away from bottom (call that 

"blank height") in a solvable position, inversion parity must be odd (why?) 
• Similarly, even number of rows away means even inversion parity 

• In every solvable position, 
inversion parity must equal parity of blank height 

• Equivalently: parity of (# inversions) + (blank height) must be even

k
n k − 1

2 3
1

2, 3, 1 
{1,2}: 2 before 1    👎 
{1,3}: 3 before 1    👎 
{2,3}: 2 before 3    ✅ 
2 inversions 
blank height = 0

3
2 1

3, 2, 1 
{1,2}: 2 before 1    👎 
{1,3}: 3 before 1    👎 
{2,3}: 3 before 2    👎 
3 inversions 
blank height = 1



Necessary vs. Sufficient 
Proposition: In any  sliding tile puzzle: 

1. If  is odd, then in any solvable position the number of inversions must be even 

2. If  is even, then in any solvable position the number of inversions plus the 
blank height must be even. 

k × k

k

k

• We have proven that if the position is solvable,  
then parity (of either inversions or inversions plus blank height) must be even 

• We have therefore proven that  
if the parity (of either inversions or inversion plus blank height) is odd,  
then the position is not solvable (why?) 

• We have not proven that if the parity is even, then the position is solvable 
• Equivalently: have not proven that even-parity positions are a connected component of the 

search space 
• This is actually true, but the proof is a bit involved



Estimating Runtime
• Last time we used number of positions to guess about feasibility: 

•  puzzle has  unique positions 
• seems OK 

•  puzzle has  unique positions 
• seems bad? 

• Demo: time stile/stp_search2.py on  input and  

• Question: Can we estimate how much runtime  would require? 

1. Estimate ratio of runtimes for unknown runtime and known runtime 
(e.g.,  input vs.  input) 

2. Multiply ratio by known runtime 

3 × 3 9! = 362,880

4 × 4 16! ≈ 2.092 × 1013 ≈ 20 trillion

3 × 3 4 × 4
4 × 4

4 × 4 3 × 3



Runtime of BFS
• BFS will have to explore every position in the worst case scenario  
• So ratio of number of positions seems like a good start 

 

• (57 million seconds is about 1 year and ten months) 
• Worst-case runtime of breadth-first search is roughly proportional to number of 

edges in the search graph 
• So ratio of number of edges is actually a better estimate 

• Question: Is this approach likely to give us a usable estimate?

16!
9!

= 16 × 15 × 14 × 13 × 12 × 11 × 10 = 57,657,600



Validating the Ratio of Edges Approach
Plan: 

1. Compute number of edges for  and  inputs 

2. Multiply ratio  by the runtime for  input 

3. Compare the prediction to the actual runtime for  input 
4. If good approximation: 

1. compute number of edges for  input 

2. Multiply  runtime by ratio of edges 

3 × 3 2 × 5
# edges in 2 × 5
# edges in 3 × 3

3 × 3

2 × 5

4 × 4

2 × 5
# edges in 4 × 4
# edges in 2 × 5

Question: Why use  instead of ?2 × 5 4 × 4



Number of Neighbours for 3 × 3

• How many neighbours does Position A have? 
• How many positions with the same number ordering have 2 neighbours? 

• How many neighbours does Position B have? 
• How many positions with the same number ordering have 3 neighbours? 

• How many neighbours does Position C have? 
• How many positions with the same number ordering have 4 neighbours?

1 2 3

4 5 6

7 8

Position A

1 2 3

4 5 6

7 8

Position B

1 2 3

4 6

7 5 8

Position C



Number of Edges for 3 × 3

• Each number orderings corresponds to 9 different positions 
• 1/9 positions have 4 neighbours 
• 4/9 positions have 3 neighbours 
• 4/9 positions have 2 neighbours 

• Total number of neighbours: 

 

 neighbours 
 

(9! positions) ×
1
9

(4 neighbours) + (9! positions) ×
4
9

(3 neighbours) + (9! positions) ×
4
9

(2 neighbours)

= (9! positions) × ( 1
9

(4 neighbours) +
4
9

(3 neighbours) +
4
9

(4 neighbours))
= 967,680

967,680/2 = 483, 840 edges

1 2 3
4 5 6
7 8

1 2 3
4 5 6
7 8

1 2 3
4 6
7 5 8



Number of Neighbours for 2 × 5

• How many neighbours does Position A have? 
• How many positions with the same number ordering have 2 neighbours? 

• How many neighbours does Position B have? 
• How many positions with the same number ordering have 3 neighbours?

Position A

1 2 3 4 5

6 7 8 9

Position B

1 2 3 4 5

6 7 8 9



Number of Edges for 2 × 5

• Each number orderings corresponds to 10 different positions 
• 4/10 positions have 2 neighbours 
• 6/10 positions have 3 neighbours 

• Total number of neighbours: 

 

 

 neighbours 
 

(10! positions) ×
4
10

(2 neighbours) + (10! positions) ×
6
10

(3 neighbours)

= (10! positions) × ( 4
10

(2 neighbours) +
6
10

(3 neighbours))
=2.6

= 9,434,880
9,434,880/2 = 4, 717, 440 edges

1 2 3 4 5
6 7 8 9

1 2 3 4 5
6 7 8 9



Validate Prediction

• Ratio:  

• Actual  runtime:  

• Estimated  runtime:  
 

• Actual  runtime: 

4,717,440 edges in 2 × 5
483,840 edges in 3 × 3

= 9.75

3 × 3 0.468s

2 × 5
9.75 × 0.468s = 4.563s

2 × 5 4.327s



Number of Edges in 4 × 4

 

 

Ratio:  

 

Prediction: 

(16! positions) × ( 4
16

(2 neighbours) +
8
16

(3 neighbours) +
4
16

(4 neighbours))
=3

=
16! × 3

2
 edges

16! × 3 neighbours for 4 × 4
10! × 2.6 neighbours for 2 × 5

= 16 × 15 × 14 × 13 × 12 × 11 ×
3

2.6
= 652,800

652,800 × 4.327s = 28,786,665s ≈ (11 months)

2 neighbours 3 neighbours 4 neighbours



Summary
• Inversions:  

• Number of pairs of numbers that are out of order (ignoring blank) 

• For odd , a  position is solvable only if it has an even number of inversions 

• For even : (steps from bottom row + inversions) must be even 
• Runtime:  

• BFS runtime is roughly proportional to number of edges in search graph 
• Can estimate runtime for large instances as follows: 

1. Compute ratio  

2. Run smaller instance to get runtime  
3. Estimate that larger instance will take  

(i.e.,  times longer than smaller instance)

k k × k

k

R =
# edges in large instance

# edges in smaller instance
T
RT

R


