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Recap: Maze Puzzles & Exhaustive Search
20 by 20 orthogonal maze
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• Maze puzzles: Find a path from origin cell to a 
destination cell 

• Completely random exploration is guaranteed to find it 
eventually 

• ...but can be arbitrarily slow 
• Can straightforwardly represent as a graph 
• Depth-first search and breadth-first search 

systematically search the graph 
• guaranteed to find the destination 
• might have to search entire graph 
• will never have to search more than the entire graph



Logistics
• Practice quiz questions: Posted last Friday 

• Answers released yesterday 
• Help with class material:  

• TA office hours tomorrow 
• Canvas discussion forum 

• Quiz 1: This Friday, Jan 23 
• In-class, full 50 minutes 
• No need to email if you have to miss it; up to 3 replaced by final exam 

automatically 
• Questions will be very similar to practice questions 



Sliding Tile Puzzle
• A sliding tile puzzle is a  grid 

• One grid cell is "blank" 

• Every other cell contains a unique number from  to 
 inclusive 

• A puzzle is solved if the numbers are in order, with the blank 
in the last cell 

• A puzzle is solvable if it can be transformed to solved by a 
series of blank moves 

• A blank move exchanges the blank cell with the cell 
immediately above, below, left, or right of it

k × k

1
k2 − 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15



Sliding Tile as Graph Search

Representing a sliding tiles puzzle as a graph search is 
easy: 
• Each position is a node 
• Two positions are neighbours if one can be 

transformed into the other with a single blank move 
• Draw an edge between each pair of neighbours 

• A solution is a path from the starting position to the 
solved position
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Implementation: stile/stp_search2.py
Breadth-first search

Compute shifts for each iteration

Manage the representation 



Efficiency of Exhaustive Search

Questions: 

1. How many possible positions for a  puzzle? 

2. How many positions need to be explored in the worst case? 

3. Is breadth-first search guaranteed to find a solution if it exists? (why?) 

4. Is unmodified breadth-first search practical for the standard  puzzle?
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Solvability
Question: Is every possible starting position solvable? 

• Any position that you can create from the solved position is solvable (why?) 
• So an unsolvable position must not be reachable from the solved position 

• Consider a  puzzle 
• From every position, only one horizontal slide and one vertical slide available 

• Two horizontal slides in a row "cancel" 
• So the only way to get beyond neighbours is to alternate vertical and horizontal 

slides 
• Reachable positions from a given position are a cycle (why?) 
• All solvable positions are part of the same cycle (why?)
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Questions: 

1. How many possible positions 
in a  puzzle? 

2. How many solvable positions 
in a  puzzle?
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Unsolvable Positions
• Question: How can we create an unsolvable position? 

• Perform a transformation that cannot be implemented by a blank move 
• Any position that can be reached by a blank move from an unsolvable position is also 

unsolvable (why?) 
• We'll see in a moment that the search graph has exactly two connected components: 

one for the solvable positions, and one for the unsolvable positions

1 2
3

1 2
3

2
1 3

2
1 3

2 3
1

2 3
1

3
2 1

3
2 1

3 1
2

3 1
2

1
3 2

1
3 2

2 1
3

2 1
3

1
2 3

1
2 3

1 3
2

1 3
2

3
1 2

3
1 2

3 2
1

3 2
1

2
3 1

2
3 1



Inversions
Definition: A sliding tile puzzle has  inversions if there are  distinct unordered 
pairs of numbers  such that  but  appears later than  when the 
numbers of the puzzle are written row-by-row.

m m
{x, y} x < y x y

2 3
1

2, 3, 1 
{1,2}: 2 before 1    👎 
{1,3}: 3 before 1    👎 
{2,3}: 2 before 3    ✅ 
2 inversions

3
2 1

3, 2, 1 
{1,2}: 2 before 1    👎 
{1,3}: 3 before 1    👎 
{2,3}: 3 before 2    👎 
3 inversions

1 3
2

1, 3, 2 
{1,2}: 1 before 2    ✅ 
{1,3}: 1 before 3    ✅ 
{2,3}: 3 before 2    👎 
1 inversion



Inversions and Solvability
• Horizontal slides don't change the number of inversions at all 

(why?) 

• Vertical slides "jump" a number  over  skipped numbers 
• All pairs that do not contain  have same inversion value 

(inverted or not) after slide 
• All pairs that include  and a skipped number have their 

inversion value flipped 

• For odd :  (rule for even  is slightly more complicated) 
• Solved position has 0 inversions (even) 
• Flipping even number of inversions means number is still 

even 
• Every solvable position must have an even number of 

inversions 
• This explains why all unsolvable positions are reachable 

from each other (why?)
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Inversions as a Solvability Bound
• Suppose a solvable  sliding tile position has  inversions 
• Question: what is the minimum number of moves required to solve it? 

• Need to get to 0 inversions 

• Each move reduces inversions by at most  

• So no fewer than  moves  

• Number of inversions gives a lower bound on how bad your position is 
• Even though it doesn't tell you exactly how bad it is 

• We'll see in the next lecture that this is a very useful measurement to have
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Summary
• Sliding tile puzzle:  

• Find a sequence of blank moves to transform a position into the solved state  
• Solved state: All numbers in order, blank at bottom right 
• All solvable positions are reachable from each other 

• (All non-solvable positions are also reachable from each other) 
• Inversions:  

• Number of pairs of numbers that are out of order (ignoring blank) 

• For odd , a  position is solvable only if it has an even number of inversions 

• For even : (steps from bottom row + inversions) must be even 

• For all , number of inversions induces a lower bound on the number of moves needed for a 
solution

k k × k

k

k


