
Sliding Tile Puzzle
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Sliding Tiles Puzzle
3. Exhaustive Search
4. Solvability & Inversions

Recap: Maze Puzzles & Exhaustive Search
20 by 20 orthogonal maze

Copyright © 2026 Alance AB, https://www.mazegenerator.net/

O

D

• Maze puzzles: Find a path from origin cell to a
destination cell

• Completely random exploration is guaranteed to find it
eventually

• ...but can be arbitrarily slow
• Can straightforwardly represent as a graph
• Depth-first search and breadth-first search

systematically search the graph
• guaranteed to find the destination
• might have to search entire graph
• will never have to search more than the entire graph

Logistics
• Practice quiz questions: Posted last Friday

• Answers released yesterday
• Help with class material:

• TA office hours tomorrow
• Canvas discussion forum

• Quiz 1: This Friday, Jan 23
• In-class, full 50 minutes
• No need to email if you have to miss it; up to 3 replaced by final exam

automatically
• Questions will be very similar to practice questions

Sliding Tile Puzzle
• A sliding tile puzzle is a grid

• One grid cell is "blank"

• Every other cell contains a unique number from to
 inclusive

• A puzzle is solved if the numbers are in order, with the blank
in the last cell

• A puzzle is solvable if it can be transformed to solved by a
series of blank moves

• A blank move exchanges the blank cell with the cell
immediately above, below, left, or right of it

k × k

1
k2 − 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Sliding Tile as Graph Search

Representing a sliding tiles puzzle as a graph search is
easy:
• Each position is a node
• Two positions are neighbours if one can be

transformed into the other with a single blank move
• Draw an edge between each pair of neighbours

• A solution is a path from the starting position to the
solved position

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 11
13 14 15 12

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 4
5 6 7 8
9 10 12
13 14 11 15

1 2 3 4
5 6 7
9 10 11 8
13 14 15 12

1 2 3 4
5 6 7 8
9 10 11
13 14 15 12

... ...

... ...

Implementation: stile/stp_search2.py
Breadth-first search

Compute shifts for each iteration

Manage the representation

Efficiency of Exhaustive Search

Questions:

1. How many possible positions for a puzzle?

2. How many positions need to be explored in the worst case?

3. Is breadth-first search guaranteed to find a solution if it exists? (why?)

4. Is unmodified breadth-first search practical for the standard puzzle?

k × k

4 × 4

Solvability
Question: Is every possible starting position solvable?

• Any position that you can create from the solved position is solvable (why?)
• So an unsolvable position must not be reachable from the solved position

• Consider a puzzle
• From every position, only one horizontal slide and one vertical slide available

• Two horizontal slides in a row "cancel"
• So the only way to get beyond neighbours is to alternate vertical and horizontal

slides
• Reachable positions from a given position are a cycle (why?)
• All solvable positions are part of the same cycle (why?)

2 × 2

1 2
3

1 2
3

2
1 3

2
1 3

2 3
1

2 3
1

3
2 1

3
2 1

3 1
2

3 1
2

1
3 2

1
3 2

Questions:

1. How many possible positions
in a puzzle?

2. How many solvable positions
in a puzzle?

2 × 2

2 × 2

Unsolvable Positions
• Question: How can we create an unsolvable position?

• Perform a transformation that cannot be implemented by a blank move
• Any position that can be reached by a blank move from an unsolvable position is also

unsolvable (why?)
• We'll see in a moment that the search graph has exactly two connected components:

one for the solvable positions, and one for the unsolvable positions

1 2
3

1 2
3

2
1 3

2
1 3

2 3
1

2 3
1

3
2 1

3
2 1

3 1
2

3 1
2

1
3 2

1
3 2

2 1
3

2 1
3

1
2 3

1
2 3

1 3
2

1 3
2

3
1 2

3
1 2

3 2
1

3 2
1

2
3 1

2
3 1

Inversions
Definition: A sliding tile puzzle has inversions if there are distinct unordered
pairs of numbers such that but appears later than when the
numbers of the puzzle are written row-by-row.

m m
{x, y} x < y x y

2 3
1

2, 3, 1
{1,2}: 2 before 1 👎
{1,3}: 3 before 1 👎
{2,3}: 2 before 3 ✅
2 inversions

3
2 1

3, 2, 1
{1,2}: 2 before 1 👎
{1,3}: 3 before 1 👎
{2,3}: 3 before 2 👎
3 inversions

1 3
2

1, 3, 2
{1,2}: 1 before 2 ✅
{1,3}: 1 before 3 ✅
{2,3}: 3 before 2 👎
1 inversion

Inversions and Solvability
• Horizontal slides don't change the number of inversions at all

(why?)

• Vertical slides "jump" a number over skipped numbers
• All pairs that do not contain have same inversion value

(inverted or not) after slide
• All pairs that include and a skipped number have their

inversion value flipped

• For odd : (rule for even is slightly more complicated)
• Solved position has 0 inversions (even)
• Flipping even number of inversions means number is still

even
• Every solvable position must have an even number of

inversions
• This explains why all unsolvable positions are reachable

from each other (why?)

n k − 1
n

n

k k

1 2 3
4 5
7 8 6

1,2,3,4,5,7,8,6

1 2 3
4 5
7 8 6

1,2,3,4,5,7,8,6

1 2 3
4 5
7 8 6

1 2 3
4 5 6
7 8

1,2,3,4,5,7,8,6 1,2,3,4,5,6,7,8

1 2 3
4 8 5
7 6

1 2 3
4 5
7 8 6

1,2,3,4,8,5,7,6 1,2,3,4,5,7,8,6

Inversions as a Solvability Bound
• Suppose a solvable sliding tile position has inversions
• Question: what is the minimum number of moves required to solve it?

• Need to get to 0 inversions

• Each move reduces inversions by at most

• So no fewer than moves

• Number of inversions gives a lower bound on how bad your position is
• Even though it doesn't tell you exactly how bad it is

• We'll see in the next lecture that this is a very useful measurement to have

k × k m

k − 1

⌈ m
k − 1 ⌉

Summary
• Sliding tile puzzle:

• Find a sequence of blank moves to transform a position into the solved state
• Solved state: All numbers in order, blank at bottom right
• All solvable positions are reachable from each other

• (All non-solvable positions are also reachable from each other)
• Inversions:

• Number of pairs of numbers that are out of order (ignoring blank)

• For odd , a position is solvable only if it has an even number of inversions

• For even : (steps from bottom row + inversions) must be even

• For all , number of inversions induces a lower bound on the number of moves needed for a
solution

k k × k

k

k

