Maze Solving

CMPUT 355: Games, Puzzles, and Algorithms

| ecture Outline

1. Logistics & Recap
2. Maze puzzle
3. Depth-first and breadth-first search

| ogistics

* Practice quiz questions: Posted last Friday

* Answers released tomorrow evening (Tue Jan 20)
e Quiz 1: This Friday, Jan 23

* In-class, full 50 minutes

 No need to emall if you have to miss it; up to 3 replaced by final exam
automatically

e Questions will be very similar to practice questions

Recap: Union-Find Operations in Go

e Black stone on 6

@ * White stone on 8
* Black stone on 9

a @ * White stone on 4

@ ‘ @ @ * Black stone on 5

White stone on O

After & is placed, we check neighbours 6, 9, 4, 1 for merge operations e Black stone on 1
1. Join 5's block (i.e., 5) to 0 6's block, so it points to 6's block's root
(i.e., 6) (O's block's liberties become

2. Next, join 5's block (i.e., 6) and 9's block (i.e., 9).

3. Without the union-by-rank optimization, that could mean either 6
points to 9 or 9 points to 6; | chose to show 6 points to 9.

empty

4. But with the union-by-rank optimization, we would have to make 9
point to 6, because it has strictly lower rank than 6.

Maze Solving

« A maze Is a grid of positions

* One is the start position, one is the goal
position

* A maze is solved by a path from start to goal

* A cell's neighbours are the cells immediately
above, below, left, or right of the cell that are not
blocked by a wall

* [ry to solve this maze!

* Question: \What algorithm did you follow?

191 A 2l
1 " S
[l s]
o]

e Bl il } By B el il
11 — | =
] |

:I_j_l I_|_ LI_‘ B
I e == —
| — IOI_I

Algorithm: Random Valk

Simplest idea that could possibly work:
e Start at the origin
* Move to random neighbour

* Keep going until you reach the destination

current := origin

while current != destination:

current := random neighbour of current

print current

Questions:
1. Is this algorithm guaranteed to find a path
to the destination”? Why or why not?
* What is the probability of finding a
f-length solution in exactly f steps?

 What is the probabillity of looping forever
(never finding the solution)?

2. Is this algorithm time efficient”

e Pick arbitrary n > t. What is (a lower bound
on) the probabillity of finding a solution In

exactly n steps”
3. Is this algorithm space efficient?

4. What Is an easy improvement?

Algorithm: Random Walk of No Return

Question: Is this algorithm
guaranteed to find a path to the
destination”? Why or why not”?

What if we never returned to a previous position?

current := origin
visited := {origin}

while current != destination:

next := random neighbour of current 0

if next not in visited: @
current := next o O
add current to visited D

print current

Algorithm: No Return and Retry

def rwander(self,psn): # recursive wander
here_ch = self.char_at(psn)

Need to guarantee that every

path 1S eventua"y expk)red assert(here_ch == empty_ch or here_ch == origin_ch)
if here_ch == empty_ch:
(Why?) self.mark_location(psn, current_ch)
self.showpretty() # print maze, so we can watch the traversal
_Recursive search starting from self.mark_location(psn, seen_ch)

for shift in nbr_offsets:
to move from a grid-point to a neighboring grid-point,
add the associated shift value to the row and column values

a random neighbour

It that doesn't WOrk, do a # e.g. adding shift (@, -1) to point (3, 4) moves to point (3,3)
recursive search from a different new_psn = psn{@l+shift(@], psn[1]+shift(1]
. new_ch = self.char_at(new_psn) # examine new_psn
random nelgthur! if new_ch == dest_ch:
self .showpretty() # print maze, so we can watch the traversal

Implemented in return new_psn

if new_ch == empty_ch:
maze/rmaze-class.py rec = self.rwander(new_psn) # recursively traverse from new_psn

if rec is not None: # did recursive call find exit?
Demo! return rec # yes? rwander(self,psn) terminates

Maze Solving as Graph Search

We can represent our problem as a graph search

* Every cell is a node in the graph

 Draw an edge between every pair of neighbours

* A solution is a path from the origin node to the
destination node

Depth-First and Breadth-First Search

 The "No Return and Retry" algorithm Is a special case of depth-first search

* (Generic search algorithm:

fringe = { origin }
seen = { origin }
while fringe not empty:
cur := remove node from fringe
for each neighbour n of cur:
if n is destination: return n
if n not in seen:
add n to seen
add n to fringe

Questions:

s this algorithm guaranteed to find a path to the
destination? Why or why not”?

What is this algorithm's worst-case time complexity?

What data structure should we use for the fringe for
depth-first search?

What data structure should we use for the fringe for
breadth-first search”

Depth-first search it we visit most recent neighbours first

Breadth-first search it we visit all of one node's neighbours before moving on to others

DFS/BES implementation: maze/maze.py

def __init__(self): def wander(self):

self.lines = [] psn = self.find_start()

for line in stdin: fringe = deque()
self.lines.append(line.strip('\n")) fringe.append(psn)

self.rows, self.cols = len(self.lines), len(self.lines[Q]) while len(fringe) > 0:
for j in range(1, self.rows-1): , , | # comment out one of these two lines
assert (self.cols == len(self.lines[j])) # each maze line has same len #psn = fringe.pop() # pop from end of list, LIFO, stack, so DFS
for line in self.lines: , ' : ‘ '
assert((line[@]==wall_ch and (line[self.cols-1]==wall_ch))) F_)Sﬂ - frlnge.popleft(? # pop frc?m front, FIFO, queue, so BFS
top and bottom of maze must be solid wall if self.char_at(pgn) != orgn_ch:
for j in self.lines[@]: assert(j == wall_ch) # left wall not solid self .mark_location(psn, done_ch)
for j in self.lines[self.rows-1]: assert(j == wall_ch) # rt wall not solid self.showpretty()

for shift in nbr_offsets:
new_psn = psn[@]+shift[@], psn[1]+shift[1]
nbr_offsets = [(0,-1), (0,1), (-1,0), (1,0)]

new_ch = self.char_at(new_psn)
python has row index, then column index, so neighbors processed if new_ch == dest_ch: return new_psn
in order left, right, up, down A R B

elif new_ch == empt_ch:

fringe.append(new_psn) # append to end of list
self .mark_location(new_psn, seen_ch)
self.showpretty()

Questions:
1. Why do we not have a "seen” variable in this implementation®?

2. Why aren't we doing any bounds checking for new_psn”?

=xample trace

nbr_offsets = [(8,-1), (0,1), (-1,0), (1,0)] Initially: add (0, 1) to fringe fringe =
8
python has row index, then column index, so neighbors processed
in order left, right, up, down e Remove (O’|) fringe = []
° I =
def wander(self): adC (O’O) frlnge []
psn = self.find_start() . —
fringe = deque() * add (0,2) fringe = [(0,0),]
fringe.append(psn) . _
while len(fringe) > 0: ° add(l’l) fl’lnge - [(O’O)’ (0’2)’]
comment out one of these two lines]
#psn = fringe.pop() # pop from end of list, LIFO, stack, so DFS * remove (O,O) frlnge - [(0,2), (I, I)]
psn = fringe.popleft() # pop from front, FIFO, queue, so BFS
if self.char_at(psn) != orgn_ch: e don't add (0,1) (why?) fringe = [(0,2), (1,1)]
self .mark_location(psn, done_ch)
self.showpretty() o frinse = 0’2 : |,| :
for shift in nbr_offsets: ado (I’O) & [() ()] @ @ @
new_psn = psn[@]+shift[@], psn[1]+shift[1] . —_
new_ch = self.char_at(new_psn) * remove (0’2) frlnge [(| ’ |)’ (I ’O)]
if new_ch == dest_ch: return new_psn | . .
elif new_ch == empt_ch: ° dOﬂ t add (O,I) frlnge - [(I’I)’ (I’O)]
fringe.append(new_psn) # append to end of list .
self.mark_location(new_psn, seen_ch) ® add (0,3) frlnge — [(I) I), (I,O),]

self.showpretty()

Summary

Maze puzzles: Find a path from origin cell to a destination cell

Completely random exploration is guaranteed to find it eventually
e ...but can be arbitrarily slow

Can straightforwardly represent as a graph

Depth-first search and breadth-first search systematically search the graph
e guaranteed to find the destination
* might have to search entire graph
* will never have to search more than the entire graph

