
Maze Solving
CMPUT 355: Games, Puzzles, and Algorithms

Lecture Outline
1. Logistics & Recap
2. Maze puzzle
3. Depth-first and breadth-first search

Logistics

• Practice quiz questions: Posted last Friday
• Answers released tomorrow evening (Tue Jan 20)

• Quiz 1: This Friday, Jan 23
• In-class, full 50 minutes
• No need to email if you have to miss it; up to 3 replaced by final exam

automatically
• Questions will be very similar to practice questions

0

Recap: Union-Find Operations in Go

8 119 10

4 75 6

0 31 21

• Black stone on 6
• White stone on 8
• Black stone on 9
• White stone on 4
• Black stone on 5
• White stone on 0
• Black stone on 1

• 0's block's liberties become
empty

After 5 is placed, we check neighbours 6, 9, 4, 1 for merge operations
1. Join 5's block (i.e., 5) to o 6's block, so it points to 6's block's root

(i.e., 6)
2. Next, join 5's block (i.e., 6) and 9's block (i.e., 9).
3. Without the union-by-rank optimization, that could mean either 6

points to 9 or 9 points to 6; I chose to show 6 points to 9.
4. But with the union-by-rank optimization, we would have to make 9

point to 6, because it has strictly lower rank than 6.

Maze Solving
• A maze is a grid of positions

• One is the start position, one is the goal
position

• A maze is solved by a path from start to goal
• A cell's neighbours are the cells immediately

above, below, left, or right of the cell that are not
blocked by a wall

• Try to solve this maze!
• Question: What algorithm did you follow?

20 by 20 orthogonal maze

Copyright © 2026 Alance AB, https://www.mazegenerator.net/

O

D

Algorithm: Random Walk

Simplest idea that could possibly work:
• Start at the origin
• Move to random neighbour
• Keep going until you reach the destination

 current := origin
 while current != destination:
 current := random neighbour of current
 print current

Questions:

1. Is this algorithm guaranteed to find a path
to the destination? Why or why not?
• What is the probability of finding a

-length solution in exactly steps?
• What is the probability of looping forever

(never finding the solution)?

2. Is this algorithm time efficient?
• Pick arbitrary . What is (a lower bound

on) the probability of finding a solution in
exactly steps?

3. Is this algorithm space efficient?

4. What is an easy improvement?

t t

n > t

n

Algorithm: Random Walk of No Return

What if we never returned to a previous position?

 current := origin
 visited := {origin}
 while current != destination:
 next := random neighbour of current
 if next not in visited:
 current := next
 add current to visited
 print current

Question: Is this algorithm
guaranteed to find a path to the
destination? Why or why not?

4 by 4 orthogonal maze

Copyright © 2026 Alance AB, https://www.mazegenerator.net/

D

O

Algorithm: No Return and Retry
• Need to guarantee that every

path is eventually explored
(why?)

• Recursive search starting from
a random neighbour

• If that doesn't work, do a
recursive search from a different
random neighbour!

• Implemented in
maze/rmaze-class.py

• Demo!

Maze Solving as Graph Search

We can represent our problem as a graph search
• Every cell is a node in the graph
• Draw an edge between every pair of neighbours
• A solution is a path from the origin node to the

destination node

4 by 4 orthogonal maze

Copyright © 2026 Alance AB, https://www.mazegenerator.net/

Depth-First and Breadth-First Search
• The "No Return and Retry" algorithm is a special case of depth-first search
• Generic search algorithm:
 fringe = { origin }
 seen = { origin }
 while fringe not empty:
 cur := remove node from fringe
 for each neighbour n of cur:
 if n is destination: return n
 if n not in seen:
 add n to seen
 add n to fringe

• Depth-first search if we visit most recent neighbours first
• Breadth-first search if we visit all of one node's neighbours before moving on to others

Questions:

1. Is this algorithm guaranteed to find a path to the
destination? Why or why not?

2. What is this algorithm's worst-case time complexity?

3. What data structure should we use for the fringe for
depth-first search?

4. What data structure should we use for the fringe for
breadth-first search?

DFS/BFS implementation: maze/maze.py

Questions:

1. Why do we not have a "seen" variable in this implementation?

2. Why aren't we doing any bounds checking for new_psn?

Example trace

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Initially: add (0,1) to fringe
• Remove (0,1)

• add (0,0)

• add (0,2)

• add(1,1)

• remove (0,0)

• don't add (0,1) (why?)
• add (1,0)

• remove (0,2)
• don't add (0,1)

• add (0,3)
• ...

 fringe = [(0,1)]
 fringe = []

 fringe = [(0,0)]

 fringe = [(0,0), (0,2)]

 fringe = [(0,0), (0,2), (1,1)]

 fringe = [(0,2), (1,1)]

fringe = [(0,2), (1,1)]

fringe = [(0,2), (1,1), (1,0)]

 fringe = [(1,1), (1,0)]

 fringe = [(1,1), (1,0)]
 fringe = [(1,1), (1,0),(0,3)]

Summary

• Maze puzzles: Find a path from origin cell to a destination cell
• Completely random exploration is guaranteed to find it eventually

• ...but can be arbitrarily slow
• Can straightforwardly represent as a graph
• Depth-first search and breadth-first search systematically search the graph

• guaranteed to find the destination
• might have to search entire graph
• will never have to search more than the entire graph

